GENERATING PRODUCTIVE TOPSOIL SUBSTITUTES FROM HARD ROCK OVERBURDEN IN THE SOUTHERN APPALACHIANS

W. Lee Daniels and Dan F. Amos
Instructor Associate Professor
Department of Agronomy, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 U.S.A.

ABSTRACT

Natural soils on steeply sloping landscapes in the Appalachian coal fields of Virginia, West Virginia, Kentucky, and Tennessee are often thin, rocky, acidic and infertile, making the topsoiling of surface mined sites impractical in many cases. Topsoil substitutes composed of blasted rock fragments are commonly used in this region. The proper selection and placement of designated topsoil substitutes is therefore critical to long term reclamation success. These mine soil surfaces are not in equilibrium and with the surface environment, and it is quite difficult to differentiate among dissolution, adsorption, desorption and precipitation reactions as these surfaces weather with time. Severe compaction limits the productivity of many otherwise suitable topsoil substitutes. A minimum non-compacted thickness of 1 m is desirable to insure long run mine soil productivity for a variety of post-mining land uses. Significant changes in the physical, chemical, and mineralogical properties of mine soils occur within one year after placement. Mine soils high in silt content often form hard vesicular surface crusts, particularly when left unvegetated. The long term survival of plant communities on these mine soils is dependent upon mine soil organic matter accumulation and N and P cycling. Little is currently known about N and P dynamics in these mine soils, but P-fixation is a profound problem in high Fe$^{3+}$ spoils. Revegetation practices that were designed to meet 2-year bond release requirements may not be sufficient to meet new 5-year release standards. Hard rock derived mine soils can often equal or exceed native topsoil in productivity and post mining land use potential.

Proceedings America Society of Mining and Reclamation, 1984 pp 37-57

DOI http://doi.org/10.21000/JASMR84010037
INTRODUCTION

Steeply sloping topography and hard, resistant, flat lying parent materials have led to shallow natural soils over much of the southern Appalachian coal fields. Deposits of colluvium in toe slope positions and heads of drainageways may be quite deep, but overall the natural soils tend to be thin, rocky, acidic, and infertile. It is usually quite difficult to separate the topsoil (A + E horizon) from underlying B, C or CR horizons before mining, and as a result the material used as topsoil is a composite of these various horizons. The Surface Mining Control and Reclamation Act (SMCRA) of 1977 allows for the use of overburden strata as topsoil substitutes when it can be shown that the physical and chemical properties of the substitute material are at least as suitable as the natural soil materials for supporting vegetation and the post-mining land use. This suitability is usually determined by a few relatively simple laboratory analyses such as acid-base accounting, extractable plant nutrients and soluble salts. The true suitability of a given overburden strata for use as a mine soil medium is dependent upon a myriad of other factors including overall mineralogy, degree of oxidation, particle size distribution after blasting and handling, relative compaction after placement, and mine soil transformations over time. Since 1977 we have conducted a series of studies in southwest Virginia and southern West Virginia with the following broad objectives:

1. To determine physical, chemical and mineralogical properties of southern Appalachian overburden strata that are critical to reclamation success.

2. To identify mine soil properties which have limited reclamation success in the past and to determine how to avoid these problems in current mining practice.

3. To determine which combinations of rock type and surface treatments are optimal for long term reclamation success.

In this paper we will attempt to summarize our major findings to date along with those from other relevant studies in surrounding states.

Local Geology and Mining Techniques

Our studies have concentrated on overburden derived from the Pennsylvanian age Pottsville series at two locations.
in Virginia and one in West Virginia (see Fig. 1). In Virginia, the Pottsville series consists of the Lee, Norton and Wise formations and in West Virginia the Kanawha, New River and Pocahontas formations. The Pottsville series is exposed extensively throughout the region which is deeply dissected with narrow valleys and extremely steep sideslopes. Howard\(^1\) conducted a detailed study of mine spoils derived from fluvial-deltaic facies of the Wise Formation exposed at the Virginia Energy Company study site in Buchanan County, Virginia and found the strata to be "characterized by abrupt lithologic and geochemical facies changes involving micaceous, calcareous, and ferruginous sandstones and siltstones, shales, mudstones, conglomerates and coals. The portion of the Wise Formation exposed at this locality consists of about 70% sandstone, 20% siltstone and 10% shale, mudstone and coal. The thicker sandstones and siltstones are comprised of medium to fine sand and silt sized quartz (70-80%) with lesser amounts of rock fragments, feldspar, mica, Fe-oxides, carbonates, clay and accessory minerals. Goethite is the dominant Fe-oxide and the dominant mica in the rocks is muscovite. The carbonates are a complex mixture of species or complex (Fe, Mn, Ca, Mg, Zn) phosphatic carbonates or carbonate apatites." The Wise Formation strata exposed at the Powell River Project study site are nearly identical in type and distribution, while those sampled by Sweeney\(^2\) in Raleigh County, West Virginia contain more siltstones and shales. The coal seams within the Pottsville series tend to be thin, but are generally high rank and low in sulfur. Rock strata lying close to the surface tend to be leached and oxidized to brownish-red hues (as described by Smith et al.\(^3\)) with resultant destruction of pyrites, loss of carbonates and increased porosity. The depth of oxidation is dependant upon the depth of local fracturing which has been shown to be related primarily to stress relief fracturing during down cutting of the deeply incised stream valleys.\(^4\) Thus, strata high on exposed ridges tend to be deeply fractured and oxidized when compared with strata which are lower in the landscape or lie deeply buried beneath the original surface.

Current surface mining is conducted primarily by contour/haul-back and mountain-top removal/valley fill methods, frequently removing multiple seams. Contour surface mines are returned to approximate original contour (AOC), and the resultant back-fills are quite steep (>25\(^\circ\)), and limited in post-mining land use. Mountaintop removal mining, however, often generates hundreds of acres of flat land with a high potential post-mining land use. Before 1977 more than 385,000
hectares of land had been disturbed by surface mining in Appalachia. Contour mining completed before the application of the SMCRA generated a highwall-bench-outslope topography (see fig. 2) after mining with the outslope portion often subject to progressive slumping and failure.

Revegetation and the 1977 Act

Prior to the enactment of the 1977 Act (SMCRA) and the resultant State Permanent Regulatory Programs, revegetation bonds in Virginia were generally returned one to two years after a healthy vegetative cover was established and maintained. Under the new regulations a healthy, self-sustaining vegetative cover must be maintained for a minimum period of five years beyond the last fertilizer, lime or seeding augmentation for bond release. The implications of this regulation are yet to be seen in many areas since most State Permanent Regulatory Programs were not enacted until several years after the 1977 Federal Act. It is obvious, however, that the potential cost to an operator of a revegetation failure at year 5 with subsequent augmentation and an additional 5 years of bonding could be considerable. A basic understanding of overburden properties, placement techniques, and their interactions with revegetation success over time is essential to the avoidance of this possibility.

Mine Spoil vs Mine Soil

Once blasted overburden strata or mine spoil is placed at a final reclaimed surface, and once it is exposed to the soil forming factors of climate, vegetation, and time it becomes mine soil. By studying the weathering of various spoil types into mine soils on older benches and fills of various ages, some inferences into the effects of spoil properties on reclamation success can be drawn.

Physical, chemical and biological weathering processes combine to significantly alter the character of original spoils in a fairly short period of time. The <2mm particle size distribution and gross chemical characteristics of mine soils are controlled directly by those of the parent rocks. Sandstone strata yield mine soils with sandy loam textures, and mixtures of sandstone and siltstone generate loamy textured mine soils. Siltstones tend to be higher in iron and soluble salt content than sandstones, and the inclusion of pyritic black shales, underclays, and waste coal in spoils usually render them highly acidic. Over time however,
all of these basic properties may change considerably. Sweeney2 studied 2, 5 and 10-year old mine soils derived from the New River Formation in Raleigh County, West Virginia and found that pedogenetic horizonation occurred within 10 years. He described distinct A horizons in 5-year old mine soils and several weak cambic B horizons in 10-year mine soils. When compared with surrounding natural soils, the mine soils were higher in pH and exchangeable bases, and approximately the same in A horizon coarse fragment content. In a parallel study at the Powell River Project site in SW Virginia, Daniels and Amos7 examined 30 mine soils ranging from 5 to 20 years in age and found similar pedogenetic horizonation with age. As mine soils leach, weather and accumulate organic matter, the A horizons thicken, surface pH drops, and coarser rock and soil particles are weathered into finer particles (Table 1). Within six months significant weathering of sand sized particles into silts has been detected in a controlled overburden placement experiment along with a dramatic increase in cation exchange capacity (Table 2). This increase in CEC is probably due to carbonate dissolution, organic matter incorporation and increased mine soil surface area8. Once carbonate dissolution slows and excess salts are leached from the system the level of exchangeable bases in older mine soils declines somewhat, but remains greater than that in surrounding natural soils2. Exchangeable K increases over time as micas in the surface are exposed to chemical and biological weathering processes (Table 1), and weathering of mica to vermiculite in one year was observed by Everett9 in a greenhouse weathering experiment using spoils from the Virginia Energy Company site. Thus it is evident from these studies that rapid changes in the morphological, chemical, physical and mineralogical properties of mine soils derived from the Pottsville series occur in as short of a period of time as six months to a year. The proper selection and management of a productive topsoil substitute must therefore be based on a thorough understanding of initial spoil characteristics and how they will change over time.

Factors limiting Reclamation Success

While much has been written concerning the adverse effects of pyritic spoil materials on revegetation and water quality, several other factors including compaction and Fe-oxide content are critical as well. Ten of the 30 weathered mine soils described7 at the Powell River Project site were barren or sparsely vegetated, but of these only one was extremely acid (pH<4.5). The remaining nine contained compacted traffic pans within 30
cm of the surface or were shallow to intact rock. Subsequent investigations at many other locations in SW Virginia have revealed that at least half of the mine soils on flat benches are underlain by shallow (<70 cm deep) traffic pans with bulk densities ≥1.7g/cc. These layers substantially reduce downward penetration of roots and water, and thereby limit water availability during summer droughts. This is a particular problem in hard rock derived mine soils since 30 to 60% of the material is coarse fragments (>2mm) which hold only limited amounts of plant available water. The bulk density of the surfaces of these mine soils decreases over time due to physical weathering processes and aggregation, but the subsurface traffic pans will persist over time unless the material is ripped or regraded. These pans occur wherever haul roads and parking/maintenance areas were reclaimed without a subsequent lift of cover materials, and create a distinctive pattern of vegetation on many older benches (Fig. 2). Plant growth on the outslopes and outer portion of the benches is often quite luxuriant when compared to areas closer to the highwall which are often underlain by the traffic pans or shallow bedrock. These highly compacted zones often perch water tables and create swampy areas in unexpected locations. Hard, silty, vesicular surface crusts are a common problem as well, and form rapidly on non-vegetated mine soils, particularly those derived from siltstones. These crusts impede seedling emergence and inhibit water infiltration, seedling root penetration, and overall reclamation success. Many mine spoils with otherwise excellent physical and chemical characteristics for plant growth are almost totally barren due to crusting or excessive compaction. The physical and chemical characteristics of one well vegetated and one nearby non-vegetated mine soil from the Powell River Project study site are presented in Table 3. The only major difference between these mine soils was the severe compaction in the non-vegetated mine soil.

The chemical characteristics of mine soils over time are intrinsically tied to their original mineralogy and weathering products. Aside from mine soils where excessive pyritic materials result in excessive amounts of soil acidity and soluble salts, the major chemical/mineralogical factor limiting long term revegetation potential of these materials is P availability. Phosphorus fixation by Fe-oxides is a profound problem in many SW Virginia mine soils. Iron oxides in the form of intergranular cements, nodules, beds, concretions, and fossil materials are ubiquitous throughout these strata and have the potential to fix
large amounts of applied P into insoluble forms1. The
total amount of iron and the ratio of Fe3+ to Fe2+ in a
given rock type directly controls its P-fixation potential. The Fe3+:Fe2+ ratio increases as a given
soil weathers and oxidizes. Siltstones are generally
higher in iron and P-fixation potential than sandstones,
and the vast majority of P in weathered mine soils
rapidly becomes fixed by Fe-oxides. Mine soils initially
high in goethite and other Fe-oxides may therefore need
extensive P fertilization. The total iron content of
fresh spoil materials generally ranges from 0.5 to 5\% and
may be in excess of 10\% in highly ferruginous strata.
Phosphorus fertilization rates as high as 780 kg/ha did
not significantly increase the plant available-P levels
of mine soils at the Powell River Project site beyond the
first several years10 indicating rapid fixation over
time. Low mine soil P levels are commonly cited
throughout the Appalachian region11 and may in turn limit
mine soil N levels by suppression of legumes12. Mine
spoil materials high in Fe-oxides should be avoided for
use as topsoil substitutes whenever possible.

Selecting A Topsoil Substitute

Overall strata thickness, acid-base balance, pH, soluble
salts, and plant available nutrients are the most
commonly used criteria for evaluating a potential topsoil
substitute. Our research has indicated that a number of
other criteria should be considered as well. The acid-
base balance approach of Smith et al.3 is certainly a
good general guide for eliminating potentially toxic
strata but its use in accurately predicting acid
production over time is limited13. Used in combination
with other criteria, however, it is a valid test for
the selection of optimal strata. Spoil pH is a very
misleading quality indicator due to the fact that it may
drop drastically due to pyrite oxidation or leaching of
salts. Once potentially toxic strata have been
eliminated, spoils with saturated conductivities in
excess of 5 to 8 mmhos/cm should be eliminated if
possible to avoid problems with soluble salts. The
evaluation of the potential plant available nutrient
status of mine spoils is complicated by the fact that
many of the standard analytical procedures for Ca, Mg, K
and P were designed for use with weathered natural soil
systems, and care must be taken in their use with blasted
or sheared rock fragments. These surfaces are dominated
by broken bonds in sheared mineral grains and frayed
intergranular cements. These surfaces are not in
equilibrium with a surface environment, and it is
difficult to differentiate among dissolution, desorption, adsorption, and precipitation reactions as these surfaces weather with time. Values for extractable Ca, Mg, K and P are often seriously inflated\(^ {14}\), particularly when an acid extractant is used on spoil materials containing appreciable quantities of carbonates such as those from the Pottsville series. Calcium Mg, and K are seldom limiting nutrients in young mine soils derived from these materials\(^ {1,9,15}\) so errors in their estimation are usually inconsequential. The accurate estimation of plant available P, however, is critical to reclamation planning. The vast majority of natural P in rocks of the Wise Formation is in the Ca-P or apatite form\(^ {1}\) which is readily soluble in acidic extracts such as dilute double acid (HCl - H\(_2\)SO\(_4\)) or acid NH\(_4\)F (Bray 1). The P values obtained by these methods are some measure of P availability to a plant over time, but certainly do not indicate what is initially plant available. Everett\(^ {9}\) found that over half of the P extracted from unfertilized Wise Formation spoils by sericea lespedeza (Lespedeza cuneata) and black locust (Robinia pseudoacacia) came from difficulty soluble sources which were soluble in concentrated HCl, but not soluble in dilute HCl-H\(_2\)SO\(_4\). Sodium bicarbonate (NaHCO\(_3\)) has great utility as a P extractant since it is effective in acid and calcareous conditions\(^ {15,16}\) and extracts primarily anion exchangeable P on mineral surfaces which would be readily plant available. Correlations between NaHCO\(_3\)-P and plant uptake are rock type specific however\(^ {9}\), indicating that even regional P fertilization recommendations based on a NaHCO\(_3\) extract may be quite inaccurate. The foregoing discussion indicates just a few of the problems involved with selecting a topsoil substitute based on chemical analyses. The selection of strata low in pyrites and soluble salts is of primary concern, however, with Ca, Mg, K and P availability being secondary.

As far as rock type is concerned, pure siltstones should be avoided because of their tendency to crust and their generally higher Fe content. Mixtures of sandstone:siltstone spoils at ratios of 1:1 or greater will yield mine soils with a loamy texture, good water retention and moderately high cation exchange capacity. Ferrugineous materials should be avoided whenever possible to avoid P-fixation problems. Freshly blasted spoils usually range from 30 to 60% soil sized (<2mm) fragments, which will hold adequate amounts of plant available water\(^ {11}\) when present in sufficient non-compacted depths. Well-leached and oxidized strata lying close to the original ground surface are often chosen for use as topsoil substitutes due to the fact that they
shatter and slake quite easily, yielding a spoil which is often quite fine textured compared to one derived from more consolidated strata. This is often counterproductive, however, since these strata are concurrently higher in $\text{Fe}^{3+}:\text{Fe}^{2+}$ ratio and P-fixation potential. When several different suitable strata are present, the final decision is based on the mining plan and which material can be utilized at the lowest cost.

Overburden Handling and Placement
To Optimize Mine Soil Potential

Detailed pre-mining planning and on-site coordination are required to insure that a designated topsoil substitute actually ends up on the final reclaimed surface. The complete isolation, storage and re-grading of designated strata can be exceedingly difficult in steep slope contour mining, particularly when the strata are thin. Blasting in lifts less than 10 m thick is often economically impractical, and therefore mixing of strata almost always occurs. This mixing of strata is often desirable, however, when two differing but suitable rock types such as siltstone and sandstone are adjacent. After the material is blasted, care must be taken to separate extremely coarse materials (>1m) during loading. Spoil fragments near the center of the shot block of overburden tend to be more fractured and finer, while those on the outside edges are frequently quite massive. Size segregation during loading is particularly feasible when the coarser material is durable rock suitable for fills, rock core drains and rip-rap. The designated material should then be hauled to the final reclamation surface and end-dumped in tightly spaced piles of sufficient height to insure a minimum lift thickness of 1 m after grading. The entire area should then be graded flat, leaving a minimum 1-2% grade for surface drainage. Once grading is complete, all further traffic must be excluded from the area. Using this method, a thick, non-compacted topsoil substitute will result at a nominal additional material handling cost to the operator since current law already requires the segregation and careful placement of topsoil substitutes. Quite frequently, final grading and surface preparation is done in much thinner lifts, resulting in compaction. This method of controlled placement is usable on almost any bench or gently sloping AOC backfill. The majority of AOC backfills in the southern Appalachians are fairly steep, however, and thinner lifts and repeated grading are often required because of machinery constraints and fill stability considerations.
Revegetation and Mine Soil Management

The major goals of revegetation are the prevention of erosion and the establishment of a self-sustaining plant community that will support the post mining land use. In order for a plant community to become self-sustaining, it must develop efficient nutrient cycles. During the early stages of revegetation, the plant community extracts large amounts of nutrient elements from the mineral soil in addition to those added as fertilizer. This continues until a large enough nutrient pool is established in the living and dead organic matter such that plant nutrient uptake is balanced to a large degree by organic matter decomposition and mineralization. This may never occur to full extent in mine soils, but the establishment of an organic pool of nutrients, particularly N and P is critical to long term reclamation success. It is not within the scope of this paper to cover all common southern Appalachian revegetation practices, however, the following strategy is recommended assuming a relatively non-acidic (pH >5.5) mine soil is generated through careful selection and placement. Whenever possible, revegetation should immediately follow grading to prevent surface crust formation. Sufficient N and K must be added initially to offset plant needs until vigorous legumes are established and micas begin to weather and supply K. A minimum addition of 75 kg/ha of N and 50 kg/ha of K$_2$O is probably necessary to insure first year stand establishment under favorable climatic conditions. Due to the complexities of evaluating P availability, and the high potential for P-fixation in these materials, a minimum of 150 kg/ha P$_2$O$_5$ should be added initially, and additional augmentation may be required in subsequent years to offset fixation. Rapid initial plant growth is essential to trap applied N, P and K into the organic matter pool, thereby holding it temporarily against leaching or fixation. An initial nurse crop of annual ryegrass or foxtail millet (Setaria italica) serves this function well, and then slower growing perennial legumes and grasses such as birdsfoot trefoil (Lotus corniculatus) and KY-31 tall fescue (Festuca arundinacea Schreb.) can become established in a permanent stand. Recent research work in western Kentucky17 indicates that while a wide variety of cool season grasses can be used successfully in reclaiming even acidic materials, the presence of a vigorous legume component is essential to maximize yields. Many of the legumes currently used such as red clover (Trifolium pratense) and yellow sweet
clover (Melilotus officinalis) decline after several years, and may not be satisfactory for long term revegetation.

The addition of organic surface amendments, particularly municipal sewage sludge significantly improves reclamation success. In 1983, Daniels et al. constructed an experimental bench out of a carefully selected 2:1 sandstone:siltstone spoil, and applied a variety of surface treatments (Table 4) before seeding it to KY-31 tall fescue. There was no significant difference in 2-year yield between the fertilized rock spoil control and the heavily limed and fertilized topsoil treatment. Highest yields were attained at sewage sludge loading rates ≥56 Mg/ha without inorganic fertilizer. The sewage sludge immediately establishes the critical organic pool of N and P that mine soils need to sustain long term plant growth. While it is not practical to treat all mine soils with sludge, it is a superior surface treatment that should be utilized whenever possible.

Revegetation strategies must be planned around anticipated nutrient availability over time. Current Federal and State regulations prohibit re-fertilization during the 5-year revegetation bond release period unless a higher post mining land use such as grazing is approved. In high P-fixing mine soils this provision makes the establishment of a self-sustaining vegetative cover even more difficult unless a low P-demanding species like Sericea lespedeza is used. As stated earlier, the implications of the 5-year bond release provision are just being felt in the Appalachians due to its recent application. It is probable that many of the fertilization and seeding practices that were sufficient to meet 2-year bond release requirements will not produce a satisfactory 5-year stand without augmentation.

Conclusions

Careful selection, placement and management of hard rock derived mine spoils can result in mine soils which are equal to or surpass native Appalachian topsoil (A + E + B + C horizon composites) in productivity. Acid-base accounting and specific conductance/soluble salts are valuable tests for identifying potentially toxic strata, but other spoil characteristics such as Fe-oxide content should be considered as well. Strata high in Fe oxides should be avoided whenever possible due to high P-fixation potential. Pure siltstone spoils are highly
susceptible to surface crusting and tend to be higher in soluble salts than sandstone derived spoils. Mixtures of sandstone:siltstone at ratios ~1:1 yield mine soils with optimal physical characteristics for plant growth. Severe compaction within the rooting zone is a widespread plant growth limiting factor in southern Appalachian mine soils. Compaction can be minimized however, by grading final reclamation surfaces in thick (≥1m) lifts, and then excluding further traffic from the area. The establishment of an organic pool of nutrients is critical to long term reclamation success. Sewage sludge is a superior surface treatment for this purpose, and is effective even in the absence of inorganic fertilization. Phosphorus availability over time is severely limited by fixation onto Fe-oxides, and may directly limit N availability due to the high P-demand of nitrogen fixing legumes. Little is currently known about N, and P dynamics in mine soils over time, and more research in this area is critically needed.

Once revegetated, the morphological, physical, chemical and mineralogical properties of the topsoil substitute rock spoil change quickly as it weathers into mine soil. Distinct, well aggregated A horizons form in several years and surface pH and soluble salt levels drop. Levels of exchangeable Ca and Mg increase for several years and then decline as carbonate dissolution slows. Exchangeable K increases over time as micas weather to vermiculite. The fact that these changes occur so quickly in weathering mine soils is indicative of the fact that their surfaces are far from equilibrium, and therefore the results of many standard soil chemical analytical procedures must be interpreted with care. Completely different analytical tests for the same element may be required depending on the extent of leaching and oxidation in the material.

The ultimate goal of successful revegetation is the establishment of a vigorous self-sustaining plant community that supports the post-mining land use. To fully meet this goal with a topsoil substitute requires a thorough knowledge of overburden characteristics, and careful consideration of overburden handling and placement during mining. Any strategy for employing topsoil substitutes must be integrated into the overall mining plan with cost minimization in mind. The recommendations made in this paper should not result in significant additional incremental costs to the operator, particularly when compared to the potential benefits derived from improved probability of bond release.
REFERENCES

9 Everett, C. J. Effects of Biological Weathering on Mine Soil Genesis and Fertility. Ph. D. Dissertation, Virginia Polytechnic Institute and State University,

ACKNOWLEDGMENTS

The authors want to thank the Penn-Virginia Resources Corporation, the Virginia Energy Company, the United States Department of the Interior Office of Surface Mining and Bureau of Mines, and the United States Environmental Protection Agency for their support of various portions of this research. We also want to thank Mr. Ron Alls for coordinating these efforts over the years.
Table 1 - Selected mean physical and chemical characteristics of 15 5-year old mine soils derived from the Wise Formation at the Powell River Project Study Site.¹

PHYSICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Depth cm</th>
<th>Coarse Fragments</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
<th>Organic Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13</td>
<td>41.0</td>
<td>43.5</td>
<td>41.2</td>
<td>15.3</td>
<td>1.4</td>
</tr>
<tr>
<td>C</td>
<td>>13</td>
<td>42.9</td>
<td>51.8</td>
<td>34.6</td>
<td>13.6</td>
<td>0.9</td>
</tr>
</tbody>
</table>

CHEMICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Depth cm</th>
<th>pH</th>
<th>Soluble Salts</th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>Al</th>
<th>CEC²</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13</td>
<td>5.2</td>
<td>74</td>
<td>2.6</td>
<td>2.2</td>
<td>0.22</td>
<td>1.02</td>
<td>6.04</td>
</tr>
<tr>
<td>C</td>
<td>>13</td>
<td>5.3</td>
<td>112</td>
<td>2.6</td>
<td>2.1</td>
<td>0.15</td>
<td>0.91</td>
<td>5.76</td>
</tr>
</tbody>
</table>

¹ Adapted from Daniels and Amos.²
² CEC taken as sum of exchangeable Ca + Mg + K + Al.
Table 2 - pH, cation exchange properties and particle size distribution of mine soils in the Controlled Overburden Placement Experiment at the Powell River Project Site before (May, 1982) and six months after (October, 1982) reclamation.

<table>
<thead>
<tr>
<th>Rock Type</th>
<th>May 1982</th>
<th></th>
<th>October 1982</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median pH</td>
<td>CEC² meq/100g</td>
<td>Sand %</td>
<td>Silt %</td>
</tr>
<tr>
<td>Pure Sandstone (ss)</td>
<td>5.65</td>
<td>3.28d</td>
<td>69a</td>
<td>22a</td>
</tr>
<tr>
<td>2:1 ss:sis</td>
<td>7.10</td>
<td>4.41bc</td>
<td>65ab</td>
<td>25a</td>
</tr>
<tr>
<td>1:1 ss:sis</td>
<td>7.10</td>
<td>4.21c</td>
<td>62ab</td>
<td>28a</td>
</tr>
<tr>
<td>1:2 ss:sis</td>
<td>7.70</td>
<td>4.89ab</td>
<td>65ab</td>
<td>25a</td>
</tr>
<tr>
<td>Pure Siltstone (sis)</td>
<td>8.05</td>
<td>5.17a</td>
<td>59b</td>
<td>30a</td>
</tr>
</tbody>
</table>

1. Adapted from Daniels, et al., column means followed by different letters are significantly different (α = 0.05).

2. CEC taken as sum of exchangeable Ca + Mg + K + Al.
Table 3 - Selected characteristics of two adjacent 5-year old mine soils from the Powell River Project Study Site. The barren mine soil was highly compacted (>1.8g/cc) below 23 cm, while the well vegetated mine soil contained no compacted layers.

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Depth cm</th>
<th>pH</th>
<th>Organic Matter %</th>
<th>CEC[^1] meq/100g</th>
<th>HCO[^3]- Ext. ppm</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
<th>Coarse Fragments %</th>
<th>Bulk Density g/cc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barren Mine Soil</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0-10</td>
<td>5.35</td>
<td>0.71</td>
<td>3.10</td>
<td>1.5</td>
<td>74</td>
<td>19</td>
<td>7</td>
<td>36</td>
<td>1.5</td>
</tr>
<tr>
<td>AC</td>
<td>10-23</td>
<td>4.91</td>
<td>0.64</td>
<td>3.34</td>
<td>1.5</td>
<td>71</td>
<td>15</td>
<td>14</td>
<td>38</td>
<td>1.6</td>
</tr>
<tr>
<td>C</td>
<td>23-110+</td>
<td>5.19</td>
<td>0.85</td>
<td>3.93</td>
<td>0.0</td>
<td>61</td>
<td>26</td>
<td>13</td>
<td>31</td>
<td>1.8</td>
</tr>
<tr>
<td>Well Vegetated Mine Soil</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0-10</td>
<td>5.75</td>
<td>0.48</td>
<td>4.03</td>
<td>4.5</td>
<td>72</td>
<td>20</td>
<td>8</td>
<td>43</td>
<td>1.4</td>
</tr>
<tr>
<td>A2</td>
<td>10-32</td>
<td>5.13</td>
<td>0.21</td>
<td>4.05</td>
<td>4.5</td>
<td>76</td>
<td>17</td>
<td>7</td>
<td>55</td>
<td>1.5</td>
</tr>
<tr>
<td>C1</td>
<td>32-52</td>
<td>5.91</td>
<td>0.21</td>
<td>4.17</td>
<td>3.0</td>
<td>76</td>
<td>17</td>
<td>8</td>
<td>50</td>
<td>1.5</td>
</tr>
<tr>
<td>C2</td>
<td>52-100+</td>
<td>6.06</td>
<td>0.30</td>
<td>3.88</td>
<td>3.0</td>
<td>77</td>
<td>16</td>
<td>7</td>
<td>62</td>
<td>1.6</td>
</tr>
</tbody>
</table>

1. CEC taken as sum of Ca + Mg + K + Al.
Table 4 - Effects of fertilization, topsoil and organic surface amendments on first year (October 1982) mine soil properties (0-5 cm) and total yield of Kentucky-31 tall fescue in 1982 and 1983. All treatments were applied to a uniform 2:1 sandstone:siltstone spoil in a controlled overburden placement experiment in May 1982.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N (kg/ha)</th>
<th>P₂O₅ (kg/ha)</th>
<th>K₂O (kg/ha)</th>
<th>pH</th>
<th>CEC (meq/100g)</th>
<th>ORGANIC MATTER (%)</th>
<th>TOTAL N (PPM)</th>
<th>HCO₃⁻ (PPM)</th>
<th>SOLUBLE SALTS (PPM)</th>
<th>1982 TOTAL DRY YIELD (Mg/ha)</th>
<th>1983 TOTAL DRY YIELD (Mg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>168</td>
<td>336</td>
<td>168</td>
<td>6.80</td>
<td>6.96c</td>
<td>2.4cd</td>
<td>0.084bc</td>
<td>54bc</td>
<td>229d</td>
<td>5.69b</td>
<td>6.03c</td>
</tr>
<tr>
<td>30cm TOPSOIL +8 Mg/ha LIME</td>
<td>168</td>
<td>336</td>
<td>168</td>
<td>7.25</td>
<td>7.77de</td>
<td>1.3d</td>
<td>0.078c</td>
<td>37cd</td>
<td>249cd</td>
<td>5.80b</td>
<td>5.16c</td>
</tr>
<tr>
<td>SAWDUST (112 Mg/ha)</td>
<td>504</td>
<td>336</td>
<td>168</td>
<td>5.80</td>
<td>10.09cd</td>
<td>6.4a</td>
<td>0.241b</td>
<td>24d</td>
<td>402cd</td>
<td>3.67c</td>
<td>5.46c</td>
</tr>
<tr>
<td>SEWAGE SLUDGE (22 Mg/ha)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7.40</td>
<td>9.26de</td>
<td>3.0cd</td>
<td>0.113bc</td>
<td>22d</td>
<td>418cd</td>
<td>3.92bc</td>
<td>5.20c</td>
</tr>
<tr>
<td>SEWAGE SLUDGE (56 Mg/ha)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7.20</td>
<td>12.39c</td>
<td>3.4bc</td>
<td>0.201bc</td>
<td>44cd</td>
<td>581bc</td>
<td>7.66a</td>
<td>10.01b</td>
</tr>
<tr>
<td>SEWAGE SLUDGE (112 Mg/ha)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7.00</td>
<td>15.71b</td>
<td>5.2ab</td>
<td>0.482a</td>
<td>81b</td>
<td>800ab</td>
<td>9.27a</td>
<td>13.57a</td>
</tr>
<tr>
<td>SEWAGE SLUDGE (224 Mg/ha)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7.00</td>
<td>19.55a</td>
<td>6.2a</td>
<td>0.590a</td>
<td>126a</td>
<td>968a</td>
<td>9.01a</td>
<td>16.48a</td>
</tr>
</tbody>
</table>

1. Adapted from Daniels et al. Column means followed by different letters are significantly different (α = 0.05).

2. CEC taken as sum of exchangeable Ca + Mg + K + Al.
key
1. Powell River Project
 Study Site
2. Virginia Energy Company
 Study Site
3. Raleigh County
 Study Site