Proceedings

15th Annual National Meeting of the American Society for Surface Mining and Reclamation

Mining--Gateway to the Future!
1998 15th National ASSMR Meeting Arrangements Committee

Program Chair

John S. Mead, Director
Coal Research Center
Southern Illinois University at Carbondale
Carbondale, IL 62901-4623
Phone: (618) 536-5521
FAX: (618) 453-7346
E-mail: jmead@siu.edu

Planning and Program Committee Members

Dean Spindler
Illinois Department of Natural Resources
Office of Mines and Minerals

Mike Sponsler
Indiana Department of Natural Resources
Division of Land Reclamation

Douglas Downing
Arch Reclamation Services, Inc.
Arch Minerals

Technical Director

Jack Nawrot
Cooperative Wildlife Research Laboratory
Southern Illinois University at Carbondale
Carbondale, IL 62901-6504
Phone: (618) 453-6945
FAX: (618) 453-6944
E-mail: jnawrot@siu.edu

Clay Kolar
Illinois Department of Natural Resources
Office of Mines and Minerals

Gene Smout
Consolidation Coal Company

Charles Hooks
Cooperative Reclamation Research Station

Local Arrangements

Dianne Throgmorton
Coal Research Center
Southern Illinois University at Carbondale
Carbondale, IL 62901-4623
Phone: (618) 536-5521
FAX: (618) 453-7346
E-mail: diannet@siu.edu

William L. Joseph
Office of Surface Mining

Kim Vories
Office of Surface Mining

Joe Galetovic
Office of Surface Mining

Registration and Facilities

Ken Robinson
Division of Continuing Education
Southern Illinois University at Carbondale
Carbondale, IL 62901-6705
Phone: (618) 536-7751
FAX: (618) 453-5680
E-mail: kenr@siu.edu

ASSMR Executive Secretary

William T. Plass
ASSMR
21 Grandview Drive
Princeton, WV 24740
(304) 425-8332
Proceedings

15th Annual National Meeting of the American Society for Surface Mining and Reclamation

Mining--Gateway to the Future!

Co-editors:
Dianne Thrugmorton
Jack Nawrot
John Mead
Joe Galetovic
William Joseph

Published by
The American Society for Surface Mining and Reclamation
made possible by the generous support of the U.S. Department of Interior, Office of Surface Mining
25 Years of ASSMR

Twenty-five years ago, a small group met at the West Virginia Division of Reclamation in Charleston, West Virginia to discuss forming an organization to serve as a forum to discuss mined land reclamation research and practices. The West Virginia Steering Committee had reviewed current and proposed reclamation research that had attracted regional interest. At the same time, the public outcry regarding the environmental impact of surface mining was gaining momentum. The consensus was that should an organization representing a broad spectrum of interests be formed, it would have regional support. In 1973, five state regulatory agencies, four universities, five federal agencies, two industries, several industry-funded reclamation associations, the Appalachian Regional Commission, and the Interstate Mining Compact Commission met to form the Council for Surface Mining and Reclamation in Appalachia.

Between the spring of 1973 and the fall of 1978, the Council met semiannually at locations within the Appalachian region. The meetings consisted of well-planned technical sessions featuring prominent mined land reclamation specialists. The number of participants increased each year, and it became clear that the Council was providing an important service.

The geographical area served was extended to the 100th meridian in 1978 in response to the interest displayed by reclamationists from the Midwestern states. The name was changed to the American Council for Reclamation Research. Semiannual meetings continued at locations within the coalfields of the eastern United States. In addition to the technical sessions, field trips were organized to review reclamation practices. The National Coal Association and Bituminous Coal Research Inc. recognized the importance of the Council by issuing an invitation to contribute to their Research and Applied Technology Symposia on Mined Land Reclamation.

The number of mined land reclamationists from the western states participating in Council meetings increased as national recognition was gained. The decision was made in 1982 to become a national professional organization, and the name American Society for Surface Mining and Reclamation was adopted. The Society cooperated with Bituminous Coal Research Inc. in 1983 to publish the Glossary of Surface Mining and Reclamation Technology. A decision was made in 1984 to hold annual meetings and to rotate meeting locations between the eastern and western states. The first meeting was held in Owensboro, Kentucky in 1984 and proceedings of the meeting were published.

The next seven years were devoted to expanding services to the membership and developing programs to enhance information exchange nationally and internationally. An awards program was initiated to recognize individuals who had made outstanding contributions to reclamation technology. Student chapters were authorized at the University of Wisconsin-Platteville and Montana State University. Technical divisions were formed to provide members with specific professional interests to meet and discuss topics of mutual interest. The Canadian Land Reclamation Association in 1988 invited the Society to cooperate in publishing their reclamation newsletter. The Canadians hosted a joint meeting with the Society in Calgary, Alberta in 1989.

International interest and representation at national meetings of the Society encouraged consideration of an international mined land reclamation organization. The response from potential members was favorable. The International Affiliation of Land Reclamationists was formed in 1991. The Canadian Land Reclamation Association, the American Society for Surface Mining and Reclamation, the British reclamation group REGRO, and the Minerals Council of Australia formed this organization to promote international information exchange relating to mined land reclamation.

The small regional organization formed 25 years ago has grown into an internationally recognized professional society through the efforts of many dedicated individuals. The fundamental policy to encourage efforts to protect, reestablish or enhance the surface resources of land disturbances associated with mineral extraction has not changed. However, the Society now is interested in other land disturbances as reclamation practices are not determined by the cause of the disturbance. The challenges for the future are to continue to provide relevant services to the membership as the complexity and diversity of reclamation technology increases and to utilize developing technology to expand information transfer nationally and internationally.

William I. Plapp
ASSMR Executive Secretary
Contents

1. Minerals Education

1. Mineral Education: Bringing Today's Mining into the Classroom; Carol Sheppard, National Mining Association .. 2
2. Mining, Minerals, and Reclamation Education; Dean Spindler, Illinois Department of Natural Resources 3
3. Education with a Purpose; Nelson Pugate, Mineral Information Institute .. 6
5. Earth Day—Taking Minerals Education to the Mine; Carolyn Bert, Arch of Illinois; with Steve Aaron .. 8
6. Nevada's Mineral Education Program; Bill Durbin, Nevada Division of Minerals 9

2. Hydrology—Characterization and Monitoring

1. A Quarter Century of Coal Mining and Hydrogeologic Research in Southeastern Montana; John Wheaton, Montana Tech of the University of Montana; with W. Van Voast 11
2. Water Quality Analysis of Highly Acidic Watershed in Southeast Ohio; Ryan J. Eberhart, Ohio University; with K.B. Edwards, B.J. Stuart 22
3. Hydraulic Properties of Surface Mine Spoils of the Northern Appalachian Plateau; Jay W. Hawkins, Office of Surface Mining Reclamation and Enforcement 32
4. Recharge and Discharge Calculations to Characterize the Groundwater Hydrological Balance; Robert G. Liddle, Office of Surface Mining .. 41
5. A Review of Methods for Optimizing Surface and Groundwater Monitoring Programs at Mine Sites; Anne Lewis-Russ, Rust Environment and Infrastructure 46
6. Methods to Differentiate Between Groundwater Solute Sources; Andy Davis, Geomega; with J. Anderson, C. Byrns 54
7. Using Tracers to Understand the Hydrology of an Abandoned Underground Coal Mine; Geoffrey A. Canty, University of Oklahoma; with J.W. Everett 62
8. Hydrologic Modeling of Reclaimed Strip Mine Spoil; Kenneth Edwards, Ohio University; with M.W. Stoertz, D. Turner .. 73

3. Tailings—Reclamation

1. Using Soil Island Plantings as Dispersal Vectors in Large Area Copper Tailings Reforestation; George Scherer, USDA-Forestry Science Lab; with R. Everett 78
2. Reclamation of Acidic Copper Mine Tailings using Municipal Biosolids; Mark Rogers, ASARCO, Inc.; with S.A. Bengson, T.L. Thompson 85
3. Native Plant Restoration of Biosolids Amended Copper Mine Tailings; Paul Kramer, University of Washington; with P. Zabowski, R.L. Everett, G. Sherer 92
4. Techniques for Establishing Aquatic Vegetation in Permanently Flooded Tailings—A Field Test; Peter J. Beckett, Laurentian University; with S. Pappin-Willanen, G.M. Courtin 101
5. Upland and Wetland Vegetation Establishment on Reclaimed Coal Slurry (Missouri Case History); V.A. Skeel, Southern Illinois University Cooperative Wildlife Research Laboratory; with J. Nawrot 102
6. Indian Creek—AML: Coal Slurry Reclamation (Kansas Case History); Steve Wittbar, Black and Veatch .. 103
7. Plant Selection for Dewatering and Reclamation of Tailings; D.C. Sego, University of Alberta; with M.J. Silva, M.A. Naaceth, K.W. Biggar, P.S. Charasyk 104
8. Practical Demonstration of Slow Leakage from a Tailings Impoundment; George Fennemore, Geomega; with A. Davis, C. Byrns .. 118

4. Reforestation

1. Thirteen-Year Hardwood Tree Performance on a Midwest Surface Mine; William C. Ashby, Southern Illinois University; with C.A. Kolar 124
5A. Mine Drainage—Biogeochemical Processes
1. Historical Overview and Future Directions of the Microbial Role in the Acidic Coal Mine Drainage System; Eleanora Robbins, U.S. Geological Survey .. 174
2. Processes Contributing to the Removal of Manganese from Mine Drainage by an Algal Mixture; Thomas Wildeman, Colorado School of Mines; with L.D. Clayton .. 192
3. Studies Leading to the Design and Construction of the Passive Treatment System at the West Fork Mine, Missouri; Thomas Wildeman, Colorado School of Mines; with J. Gusek, A. Miller, J. Fricke .. 202
4. The Challenges of Designing, Permitting, and Building a 1,200 GPM Passive Bioreactor for Metal Mine Drainage, West Fork Mine, Missouri; James Gusek, Knight Piesold LLC; with T. Wildeman, A. Miller, J. Fricke .. 203

5B. Mine Drainage—Treatment, General
1. Geochemistry of Laboratory Anoxic Limestone Drains; Patrick Sterner, West Virginia University; with J. Skousen, J. Donovan .. 214
2. Design Considerations and Construction Techniques for Successive Alkalinity Producing Systems; George A. Skovran, U.S.D.A. Natural Resources Conservation Service; with C.R. Clouser .. 235
3. The Effectiveness of Acid Rock Drainage Control Strategies at the Summitville Mine; Victor Ketellapper, U.S. Environmental Protection Agency; with J.W. Christiansen .. 243
4. Purification and Treatment of Mine Drainage in Some Mine Areas of China; Hong Yu, Xiangtan Mining Institute .. 253
5. Dense Sludge Process for Reducing AMD Sludge Disposal; Michael Leon, Chester Engineers; with R.L. Zick, D.C. Finn .. 257

5C. Mine Drainage—Passive Treatment, Wetlands
1. Mine Closure—Can Passive Treatment Be Successful?; Paul Eger, Minnesota Department of Natural Resources; with G. Melchert, J. Wagner .. 263
2. Retention of Manganese by a Constructed Wetland Treating Drainage from a Coal Ash Disposal Site; Kenneth Kerrick, University of Pittsburgh at Johnstown; with M. Horner .. 272
3. Prediction of Fe²⁺ Concentrations Using Laboratory Rate Laws in Wetlands Constructed for Acid Mine Drainage Treatment; Carl S. Kirby, Bucknell University; with H.M. Thomas, G. Southam, R. Donald .. 280
4. Comparison of Color, Chemical, and Mineralogical Composition of Mine Drainage Sediments to Pigment; Carl S. Kirby, Bucknell University .. 281

5D. Mine Drainage—Prediction and Monitoring
1. Hydrologic Conditions in the Coal Mining District of Indiana and Implications for Reclamation of Abandoned Mine Lands; Greg Olyphant, Indiana University; with D. Harper .. 283
2. Geophysical Investigations of Near-Surface Materials and Groundwater Quality at Abandoned Mine Land Site No. 1087, Pike County, Indiana; Kevin Spindler, Indiana University; with G.A. Olyphant, D. Harper .. 289
3. Phycomicrobial Ecology of Acid Mine Drainage in the Piedmont of Virginia; Rama Krishnaswamy, George Washington University; with R.A. Hanger .. 299
4. Predicting Life-of-Mine Tailings Discharge Water Quality; Andy Davis, Geomega; with A. Tisdale, C. Byrns .. 309
5. A Method to Predict Evolving Post-Closure Pit Lake Chemistry; Andy Davis, Geomega; with G. Femmemore .. 315
6. Acid Soils–Reclamation Practices

1. Influence of Liming and Topsoil Thickness on Vegetative Growth and Leachate Quality of Acidic Coal Refuse; W. Lee Daniels, Virginia Tech; with R-S Li, B. Stewart .. 323
2. Lime Treatment Experiments Gob Revegetation in Illinois–a Twenty-Five Year Record; Charles Medvick, Illinois Department of Natural Resources .. 338
3. pH Control in Acidic-Metalliferous Mine Waste for Site Revegetation; Douglas Dollhopf, Montana State University .. 356
5. Acidic Minespoil Reclamation with Alkaline Biosolids; Cindy Drill, NVIRO International; with H.J. Lindsay, T.J. Logan .. 367
6. Design of Field Test Plots for a Sloped Waste Rock Surface; Mike O'Kane, O'Kane Consultants Inc.; with J. Stoicescu, S. Janaszewski, D.M. Michiana, M.D. Haug 368
7. Use of Alternatives Analysis to Determine the Reclamation Approach for Heap Leach Pads; Roy R. Cellan, Resource Concepts, Inc. 379
8. The Relationship Between Waste Rock Geochemistry, Age and Reactivity; Steve Helgen, Geomeg, with A. Davis, C. Byrns .. 383
9. Bunker Hill Superfund Site: Ecological Restoration Program; Sally Brown, University of Washington; with Chuck Henry, R. Chaney, H. Compton 388

7. Wildlife and Fisheries Habitat

1. The Whiteside Run Restoration Project: Wetlands and Stream Mitigation and Restoration of a Previously Polluted Stream; Alan Bigatel, Pennsylvania Department of Environmental Protection; with W.W. Heller, J.C. Foreman, S. Kepler .. 395
2. Effect of Stocking Density on Extensive Production of Freshwater Shrimp in Coal Mine Reclamation Ponds; James Tidwell, Kentucky State University; with B. Grey, J. McGuire, S.D. Coyle, F. Wynne .. 406
3. Assessing the Effect of Mine Subsidence on an Internationally Important Wetland Site; R.N. Humphries, Humphries Rowell Associates Ltd. 409
4. A Baffle Facility in a Sand/Gravel Quarry and a Question of Wetland Jurisdiction; Georganna Collins, Landscape Architect .. 418
5. Comparison of Bird Communities in Southwestern Montana After Fourteen Years of Natural Recovery from Smelter Impacts; John Baldwin, Hayden-Wing Associates; with L.D. Hayden-Wing, J.B. Winstead .. 419
6. Wild Ungulate use of Areas in Southwestern Montana After Fourteen Years of Natural Recovery from Smelter Impacts; Larry Hayden-Wing, Hayden-Wing Associates; with J.R. Baldwin, J.B. Winstead .. 428
7. Habitat Use and Food Habits of Snowshoe Hares Association with a Reclaimed Strip Mine in Interior Alaska; Charles L. Elliott, Eastern Kentucky University .. 440

8. Subsidence–Engineering Practices and Environmental Effects

1. Assessing the Effect of Mine Subsidence on Dwarf Shrub Ericoid Heath Communities Within a Site of National Importance; R. Neil Humphries, Humphries Rowell Associates Ltd.; with H. Wesemann, P.R. Benyon, S.W. Peace .. 446
2. Environmental Damage and Countermeasures in China Coal Mine Areas; Bingnan Hu, Southern Illinois University .. 447
3. Identification of Underground Mine Workings with the Use of Global Positioning System Technology; Geoffrey A. Canny, University of Oklahoma; with M. Sharp, J.W. Everett .. 453
4. The Effect of Softening on the Bearing Capacity of Mine Floors; Gennaro Marino, Marino Engineering Associates, Inc.; with S-H Choi .. 459
5. Lifting and Protecting Residential Structures from Subsidence Damage Using Airbags; Theodore L. Triplett, The University of Tennessee Knoxville; with R. Bennett .. 483
6. Subsidence Resistant Repair of a Block Basement; Gennaro G. Marino, Marino Engineering Associates, Inc.; with J.W. Mahar, E. Murphy, J. Farnetti 484
9. **OSM Acid Forming Materials Mini Workshops**

An overview of OSM's Technical Training Program (TTP and TIPS), Technical Transfer Programs (EP and GIS), a historical look at Technical Development (Applied Research and TIPS), and the need for future development (results of the CCB, Prime Farmland, and other OSM sponsored forums).

Instructor/Agency:
Joe Galetovic and William Joseph
Office of Surface Mining ... 494

10. **RUSLE-Erosion Prediction Techniques on Mined Construction and Reclaimed Lands**

An overview of new erosion prediction techniques and supporting software developed through an OSM Technology Transfer Program (two consecutive presentations).

Instructor/Agency:
Terry Toy
University of Denver
George Foster
USDA Agricultural Research Service 495

11. **IDNR Wetlands Technology Transfer Program**

Workshop highlighting the IDNR-INHS "Illinois Wetlands Restoration and Creation Guide."

Instructor/Agency:
Brian Wilm
Illinois Department of Natural Resources 496

12. **Mine Planning and Postmining Land Use**

1. Total Resources Management in Mine Planning; Alan K. Kuhn, AK GeoConsult, Inc. 498
2. Virtual Modeling for Environmental Decision Support; Joze Kortnik, University of Ljubljana; with M. Kvartic .. 504
4. Reclamation Challenges at Usibelli Coal Mine in Healy, Alaska; Larry P. Jackson, Usibelli Coal Mine, Inc. .. 521
5. Rational Selection of Post-Mining Land Use; Alan Kuhn, AK GeoConsult, Inc. 522
6. Remining to Reclaim Abandoned Mined Lands: Virginia's Initiative; Carl E. Zipper, Virginia Polytechnic Institute and State University; with B. Lambert 530

13A. **Vegetation Establishment– Principles and Practices**

1. Working with Nature: A Review of 25 Years of Successful Land Reclamation in Wales; I. G. Richards, Richards Moorehead and Laing LTD 540
3. Pre- and Postmine Diversity Revisited; Robyn Tierney, New Mexico Mining and Minerals Division; with G.L. Wade ... 564
5. Technology Transfer for the Revegetation of Phytotoxic, Smelter-Denuded Soils–The Potential Use of Minimal Amelioration and Reciprocal Transplantation of Metal-Tolerant Grasses at Flin Flon, Manitoba; Keith Winterhalder, Laurentian University .. 579
6. Abundance and Distribution of Lichens Found in the Reclaimed Areas of the Nickel and Copper Mining Region of Sudbury, Ontario; Peter J. Beckett, Laurentian University; with S. Wainio 580
7. Organic Soil Amendments and Fiber Wattles for Enhanced Revegetation and Erosion Control; Stanley M. Miller, University of Idaho; with J. Steinbacher, P. McRae 581
9. Reclamation Research for Various Land Uses in the Oil Sands Region of Alberta, Canada; Terry M. Macyk, Alberta Research Council; with M.Y.P. Fung, R.W. Pauls 593
10. Stabilizing Shorelines with Coir Fiber; Janet Kostielney, BonTerra America, Inc.; with D. Knezick 603

13B. Vegetation Establishment– Warm Season Grasses
1. Establishment of Warm-Season Native Grasses and Forbs on Drastically Disturbed Lands; Stuart Miller, Missouri Department of Natural Resources .. 603
2. Establishing Native Warm Season Grasses on Eastern Kentucky Strip Mines; Thomas G. Barnes, University of Kentucky; with J.L. Larkin, M.B. Arnett .. 615
3. Converting Tall Fescue Fields to Native Warm Season Grasses in Kentucky; B. E. Washburn, University of Kentucky; with T.G. Barnes .. 634
4. Warm Season Grass Establishment (In One Year Without the Weeds); Doug Downing, Arch Reclamation Services, Inc. ... 635

14A. Coal Combustion By-Products–General
2. Coal Combustion Ash Haulback for Mine Reclamation; Richard E. Gray, GAI Consultants, Inc.; with T.A. Gray ... 645
4. A Field Demonstration of the Coal Combustion By-Products Based Paste Backfill for Subsidence Control in Illinois; Yoginder P. Chugh, Southern Illinois University; with D. Dutta, S. Renninger .. 658

14B. Coal Combustion By-Products– Mine Drainage Treatment
1. The Western Maryland Coal Combustion By-Products/ Acid Mine Drainage Initiative–The Winding Ridge Demonstration Project; Leonard G. Rafalko, Environmental Resources Management; with P. Petzrick .. 668
2. Injection of Coal Combustion By-Products into the Omega Mine for the Reduction of Acid Mine Drainage; Thomas A. Gray, GAI Consultants, Inc.; with T.C. Moran, D.W. Broschart, G.A. Smith ... 682
3. An Injection Technique for In Situ Remediation of Abandoned Underground Coal Mines; Geoffrey A. Canty, University of Oklahoma; with J.W. Everett .. 690
4. Utilization of Wet FGD Material for AMD Abatement in Underground Coal Mines; Jim Ashby, Mettiki Coal Corporation ... 698
5. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines; Shan Mafi, American Electric Power; with M.T. Damian, R. Baker .. 705
6. Passive Treatment of Acid Mine Drainage Using Coal Combustion By-Products and Spent Mushroom Substrate: Results of a Column Study; Terri Crisp, University of Oklahoma; with R.W. Nairn, K.A. Strevett, J. Everest .. 712
7. Metal Release from Fly Ash upon Leaching with Sulfuric Acid or Acid Mine Drainage; Jeff Skousen, West Virginia University; with D.K. Bhumbla .. 713
8. Vegetation Establishment on Soil-Amended Weathered Fly Ash; R. I. Barnhisel, University of Kentucky; with O. Semalulu, S. Witt .. 722

15. Prime Farmland Reclamation and Mine Soils Management
1. Illinois Reclaimed Soil Productivity: Restoration Techniques; Gene Smout, Consolidation Coal Company ... 733
2. Mine Soil Classification and Mapping; Robert Darmody, University of Illinois at Urbana-Champaign ... 753
3. Soils-Based Productivity Evaluation; Charles Hooks, Southern Illinois University .. 736
4. Land Use and Value After Reclamation; William Phelps, ARK Land Company .. 737
5. Small Mines and Future Techniques; Mark Yingling, Black Beauty Coal Company .. 738
1. Effects of Arbuscular Mycorrhizae on Water Stress Tolerance of Big Sagebrush Seedlings;
Gerald Schuman, USDA High Plains Grassland Research Station; with P.D. Stahl, S.E. Williams,
S.M. Frost ... 740

2. Impacts from Surface Mining on Ground-Water System: A Twenty-Year Record; Kitchakarn
Promma, Texas A&M University; with C.C. Mathewson .. 741

3. Utilization of Coal Combustion By-Products in Mine Reclamation and Agriculture—A Summary of

4. An Experimental Approach to Assessing the Effects of Mining Subsidence on a Flood Meadow
Community; Paul R. Benyon, Humphries Rowell Associates Ltd.; with R.N. Humphries, K. Gregson,
S. Marshall, S.W. Peace .. 743

5. Recovery and Enhancement Plan Development for the Leading Creek Watershed, Meigs County,
Ohio; Rebecca J. Currie, Virginia Polytechnic Institute and State University; with D.S. Cherry,
H.A. Latimer, J.H. Van Hassel, J.E. Babendreier .. 744

Restoration Project; David J. Soucek, Virginia Polytechnic Institute and State University; with
R.J. Currie, D.S. Cherry, G.C. Trent .. 745

7. Post-Mining Predictive Visual Quality Assessment in Two Michigan Surface Mines; Jon Bryan Burley,
Michigan State University; with P.S. Keefe .. 752

8. Evaluating Mine Reclamation Habitats at the Landscape Level Following Mountain-Top Removal;
Stacy N. Edmonds, Miami University .. 761

9. Validity of Manganese as a Surrogate of Heavy Metal Removal in Constructed Wetlands Treating
Acidic Mine Water; Richard F. Unz, The Pennsylvania State University; E. Royer, W.W. Hellier 762

10. Inhibition of Acid Production in Coal Refuse Amended with CaSO₄-Based Flue Gas Desulfurization
By-Product; Warren Dick, The Ohio State University; with Y-L Hao, J. Beeghly 770

11. Seasonal and Long-Term Performance of Alkalinity-Producing Passive Systems for the Treatment
of Mine Drainage; George Watzlaf, U.S. Department of Energy 771

12. Minesoil Development in Central West Virginia; W.J. Noll, West Virginia University; with
J.C. Sencindiver.. 772

13. Restoration of Leafy Spurge Infested Rangeland in North Dakota; Ron E. Ries, USDA Agricultural
Research Service; with J.F. Karn .. 773

14. Recomposing Mined Lands: Landscape as Arena for Education; Susan Wessman, Landscape
Architect .. 774

15. The Whiteside Run Restoration Project: Wetlands and Stream Mitigation and Restoration of a
Previously Polluted Stream; William W. Hellier, Pennsylvania Bureau of Mining and Reclamation;
with A. Bigatel, J.G. Foreman, S. Kepler .. 775

16. Application of Geologic Modeling to Overburden Characterization and Special Handling at a Texas
Lignite Mine; Paul T. Behum, Jr., USDI Office of Surface Mining; with William L. Joseph 776

17. Establishing Wetland Vegetation in Alkaline Mine Tailings; J.A. Freeland, Northern Ecological
Services; with P.J. Robinson, C.L. Wolverton .. 777