Large Ungulates With Gas: How Elk Respond To Natural Gas Development

Clay B. Buchanan and Jeffrey L. Beck
Department of Ecosystem Science and Management
University of Wyoming
June 3, 2013
Risk – A state of uncertainty where some of the possibilities involve a loss, catastrophe, or other undesirable outcome
Risk – A state of uncertainty where some of the possibilities involve a loss, catastrophe, or other undesirable outcome
Pursued
Injury
Death

Balance time and energy

Foraging
Locating a mate
Migrating
Risk concepts are transferable to disturbance events.
Fortification Creek Elk

- Sample elk distribution and resource selection
- Measure influences of coal bed natural gas (CBNG) development
- Assess elk ability to reduce impacts
• Fortification Creek Area (FCA; ~498 km²)
• Non-migratory elk population of ~230 individuals
• CBNG development began in early 2000s
• >700 wells at the end date of GPS data
• Sagebrush/grassland dominated
• GPS collared female elk
• Measured traffic volume and environmental variables

• Resource selection functions (RSF, Manly et al. 2002)
 – Pooled data across individual elk
 – Relative probability of elk use as the response variable
 – Summer and winter RSFs
 – Day and night during early and late summer RSFs
Conclusion:
Part 1

- Elk avoided CBNG roads
 - Increased avoidance during development
 - Human activities levels vary
 - Avoided roads with lowest activity

- Juniper cover type and ruggedness
 - Predictive during all periods
 - Thermoregulation
 - Increasing importance during development
 - Escape cover
Elk Self Mitigation of Development Impacts
Mitigation – the act of making a condition or consequence less severe
Mitigation – the act of making a condition or consequence less severe
Mitigation

- Examples of:
 - Resource use shifts
 - Some return to original resource after disturbance lessens or concludes

- Do animals use resources on a smaller temporal or spatial scale to mitigate disturbance effects?
Similar Methods

• Pooled GPS data across individuals
• Relative frequency of use as the dependent variable
• Locations separated by time of day
 – Day (700 – 1900 hrs)
 – Night (1900 – 700 hrs)
• Seasons
 – Early summer (April 1 – July 14)
 – Late summer (July 15 – October 15)
Early Summer 3.5% shift

Late Summer 3.6% shift

High Probability of Use Areas
Conclusion: Part 2

- High use areas
 - Average distance further away from roads at night than during the day
 - Early summer—250 m further
 - Late summer—280 m further
 - Maintaining avoidance of roads
 - Vehicle traffic present but decreased at night
 - Less predictable traffic pattern
• Has this effected demography?
 – Approx. 90% pregnancy rate
 – Cow:calf are consistant
 – Population numbers remain constant
• Body condition (organ fat content) is lower than reference population
Overall Conclusions

• FCA elk appear to perceive varying levels of risk
 – Respond by avoiding risky areas
 – Mixed demographic signals

• Short term mitigation is not occurring
 – FCA elk maintain or extend distance from roads at night
Overall Conclusions

• FCA elk avoided CBNG roads
 – Avoidance behavior was greater during CBNG development
 • Compared with pre development elk resource selection

• Loss of high use habitat of 30–40%

• FCA elk did not opportunistically return at night

• Reducing vehicle volume may reduce pressure
 – Also: telemetred wells, directional drilling, refugia
Committee members:
J. L. Beck
S. N. Miller
M. J. Kauffman
B. M. Alexander
D. F. Doak

Private landowners:
Hayden Ranch, Powder River Ranch, and Maycock Ranch

Recognize:
National Parks Service Natural Sounds Lab
Wyoming Fish and Wildlife Cooperative Unit
Area Elk Hunters

Thanks to:

Special Thanks to:
The Beck Lab
ESM and PiE Graduate Students
Erin and the Monsters
Questions