From BS to BMP- Using Biosolids for Taconite Tailings Reclamation

Paul Eger, Global Minerals Engineering,
Craig Lincoln, Todd MacMillan, Kathy Hamel,
Western Lake Superior Sanitary District
Kendall Dykhuis, St Louis County Extension Service
Candice Maxwell, United Taconite
Jim Takala, Takala Farms
Outline

- Background
- History of research
- Development of new Best Management Practice
- Agricultural practices
Background

- Standard mineland reclamation practice (inorganic fertilizer, seed, mulch)
- Works well on fine tailings
Background

- Coarse tailings are difficult to revegetate
- Standard mineland reclamation practice not successful
 - Typical cover 30-50%
 - Repeated applications improves cover to a maximum of ~70%
- Mineland reclamation rules require:
 - 90% cover after 3 years (5 years on south or west slopes)
 - Self sustaining vegetation after 10 years
Coarse Tailings
New Paradigm Needed

Organic amendments
- Peat
- Yard waste compost
- Municipal solid waste compost

Series of studies conducted
- Percent cover increased with increasing organic matter
- Cost effective rate was about 20 dry tons/acre
 - Vegetation met 90% cover standard
Standard mineland reclamation

MSW Compost
Problem

• Availability
 – Small amounts of yard waste produced used by public
 – Plans for nearby large-scale municipal solid waste composting facility never materialized
 – Other MSW Compost facilities closed
• No nearby source
Readily available source of nutrients with enough supply to meet mineland reclamation needs

Biosolids!
What really are Biosolids?

• Solid residuals from wastewater treatment plant
 – Treated to reduce pathogens and meet EPA standards
• Previously known as “Sludge”
• Now called a “slow release nitrogen fertilizer” (USEPA)
 – Nutrient-rich organic product of wastewater treatment
Biosolids application rate

• Biosolids quality has generally improved over time
 – Better treatment, lower metals
• Main concern is nitrate leaching
• Agronomic limits
 – Apply only as much nitrogen as the plants growing on the site can use
 – Typical is about 100 lbs N/acre
 • Type of plants
 • Amount of anticipated plant growth
EVTAC, 1997

• First large scale test with biosolids
 – 5 acre demonstration plots
Results, EVTAC (1997 application)

- 100 lbs N /acre improved vegetation but did not meet cover standard
Results, EVTAC (2000 application)

- Top dressing with an additional 100 lbs/N
- Generally improved vegetation
Goal

• Determine an optimum one-time biosolid application rate that will
 – produce vegetation that will meet the reclamation requirements
 – Will not adversely impact water quality
 – Will be cost-effective
Experimental Design

• 5 acre demonstration plots
• Small bin studies to look at the effect of biosolids on water quality
• Treatments
 – Standard mineland reclamation
 – Biosolids
 – Biosolids + paper mill residue
 • Add high carbon material to tie up extra nitrogen
Experimental Design - Details

• Treatments
 – Standard mineland reclamation
 • Seed; grass, legume mix
 • 500 lbs/acre, 18-46-0
 • Mulch, 2 tons/acre
 – Biosolids
 • 100 lbs N/acre (3.1 dry tons/acre)
 • 200 lbs N/acre (6.2 dry tons/acre)
 • 400 lbs N/acre (12.4 dry tons/acre)
 – Biosolids + paper mill residue
 • 200 lbs N/acre + 28 dry tons/acre
 • 400 lbs N/acre + 56 dry tons/acre
Results, Water Quality

• Total dissolved solids
 – Increased with increasing application of biosolids
 – Decreased with time
• Trace metals
 – Low levels associated with paper mill residue
 – Decreased with time
• Nitrate
Water Quality Results, Nitrate

Water quality standard
3 year cover, lower slopes
Conclusions

• Biosolids at 200 lbs N/ acre
 – Suitable vegetation
 – Minimum impact on water quality

Standard mineland reclamation Biosolids, 200N
New Best Management Practice

• In 2005, PCA approved the application of biosolids to provide 200 lbs N/acre for coarse tailings reclamation

• Applications
 – UTAC
 – Keetac
 – US Steel

• Vegetation has met standard
Biosolids and Fine Tailings

• Standard mineland reclamation
 – Successfully meets mineland reclamation standards

• Can we do better?
 – Biomass crops
 – Forage
 – Soil development
Hybrid Poplar
Forage Production

- Takala Farms wanted to expand dairy herd
- Needed more forage
- Biosolids
 - Provide Nitrogen and Phosphorus
- Tailings
 - Naturally high in Potassium
 - Suitable pH
Forage Production

- St Louis County Extension organized partnership
- Takala Farms/UTAC/ DNR/PCA/ Extension Service
- Agreement
 - Alfalfa for Takala
 - Hay mulch for UTAC
<table>
<thead>
<tr>
<th>Year</th>
<th>Yield, tons/acre (dry matter basis)</th>
<th>Number Cuttings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>1.7</td>
<td>1</td>
</tr>
<tr>
<td>2009</td>
<td>4.0</td>
<td>3</td>
</tr>
<tr>
<td>2010</td>
<td>4.1</td>
<td>3</td>
</tr>
<tr>
<td>2011</td>
<td>5.0</td>
<td>3</td>
</tr>
<tr>
<td>2012</td>
<td>3.1</td>
<td>2</td>
</tr>
<tr>
<td>Typical yield, managed fields</td>
<td>2.5-3.0</td>
<td>2</td>
</tr>
<tr>
<td>Typical yield, unmanaged fields</td>
<td>1.0-1.5</td>
<td>1</td>
</tr>
</tbody>
</table>
Got Soil?

Organic Content of Tailings

% organic matter

Year
Better Living Through Biosolids

• Successful BMP for coarse tailings
 – Meet reclamation standards
• Successful forage production on fine tailings
 – Production as good or better than typical fields
• Increases in organic content of tailings with repeated applications
 – Increased soil development
Questions?
Costs

- Initially no cost
- Today
 - $19/acre for application
 - $13/acre to incorporate
 - ~ $1/ton surcharge (over 40 mile haul)
- Total ~ $50/acre