Determination of Dominant Trace Metal Sequestration Processes in Two Vertical Flow Bioreactors Using Modified Tessier Extractions

J.A. LaBar and R.W. Nairn

University of Oklahoma
School of Civil Engineering and Environmental Science

30th Annual Meeting of the American Society of Mining and Reclamation
June 1-7, 2013
INTRODUCTION

- **Tar Creek Superfund Site**
 - Mayer Ranch, Commerce, OK
 - Over 30 years of unabated mine drainage

- Elevated metals (Fe, Cd, Ni, Pb, Zn), mineral acidity, sulfate

- Elevated alkalinity
 - Net-alkaline discharges with circum-neutral pH

- PTS constructed and began operation in 2008
INTRODUCTION

• Vertical flow bioreactors
 – Thick layer of organic carbon substrate
 – Anoxic, reducing conditions

• Goals = generate bicarbonate alkalinity and remove trace metals as sulfides

• Reality = also removed through sorption and exchange and as carbonates and oxides
INTRODUCTION

• Many methods for evaluating removal products
 – Varied success

• Mineralogical analyses
 – XRD, SEM, TEM, XANES, SXRF, etc.
 – High concentrations of crystalline products preferred

• Total metals
 – Lack of speciation

• Acid-volatile sulfides/simultaneously extracted metals
 – Amorphous vs. crystalline
INTRODUCTION

- Sequential extractions
 - Numerous methods
 - Use specific reagents to extract targeted species
 - Species are operationally defined (e.g., acetic acid soluble)

- Tessier et al., 1979
 - Exchangeable – 1 M MgCl$_2$
 - Carbonate – 1 M NaOAc at pH 5
 - Fe-Mn oxides – 0.04 M NH$_2$OH·HCl in 25% HOAc
 - Organic – HNO$_3$/H$_2$O$_2$ then 3.2 M NH$_4$OAc in 20% HNO$_3$
 - Residual - HClO$_4$/HF
METHODS

• Two VFBR
 – Approx. 49 m x 22 m
 – 45% SMC, 45% wood chips, 10% man-sand

• Water quality evaluated monthly for 18 months

• Nine substrate cores collected at equidistant points
 – June 2010
 – Placed in Ziploc bags
 – Stored at <4°C
 – Returned to CREW labs
METHODS

- Samples dried and subsampled
 - TCLP
 - Total metals
 - Sequential extractions

- Modified Tessier method
 - Added water soluble fraction (e.g., Leinz et al., 2000)
 - Microwave assisted HNO₃ digestion for “residual”

- All fractions analyzed with ICP-OES
 - Matrix adjustments
 - Y internal standard
RESULTS – Water Quality

- Near 100% removal of trace metals in summer months
 - Not as efficient under low temperature conditions

- Reducing conditions present May – October
 - Highest temperatures
 - Lowest effluent concentrations

- No significant differences between north and south
 - Influent and effluent
Mean Influent and Effluent Water Quality

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Influent (N)</th>
<th>Influent (S)</th>
<th>Effluent (N)</th>
<th>Effluent (S)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.55</td>
<td>6.54</td>
<td>6.84</td>
<td>6.81</td>
<td>18</td>
</tr>
<tr>
<td>DO</td>
<td>8.43</td>
<td>8.08</td>
<td>0.74</td>
<td>0.94</td>
<td>18</td>
</tr>
<tr>
<td>Alkalinity (mg/L as CaCO₃)</td>
<td>148</td>
<td>151</td>
<td>259</td>
<td>242</td>
<td>18</td>
</tr>
<tr>
<td>Fe</td>
<td>8.36</td>
<td>8.83</td>
<td>1.66</td>
<td>2.10</td>
<td>18</td>
</tr>
<tr>
<td>Zn</td>
<td>5.69</td>
<td>5.86</td>
<td>0.84</td>
<td>1.30</td>
<td>18</td>
</tr>
<tr>
<td>Co</td>
<td>0.06</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
<td>9-18</td>
</tr>
<tr>
<td>Ni</td>
<td>0.81</td>
<td>0.81</td>
<td>0.16</td>
<td>0.22</td>
<td>18</td>
</tr>
<tr>
<td>Mn</td>
<td>1.44</td>
<td>1.52</td>
<td>1.17</td>
<td>1.30</td>
<td>18</td>
</tr>
<tr>
<td>Cd</td>
<td>0.003</td>
<td>0.002</td>
<td>0.001</td>
<td>0.002</td>
<td>3-9</td>
</tr>
<tr>
<td>Pb</td>
<td>0.025</td>
<td>0.030</td>
<td>-</td>
<td>-</td>
<td>1-2</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>2267</td>
<td>2394</td>
<td>2405</td>
<td>2284</td>
<td>18</td>
</tr>
</tbody>
</table>
Temperature (°C) and 1/10 ORP (mV)

- Zinc Concentration (mg/L)
- N IN
- S IN
- N OUT
- S OUT
- Temp
- ORP
RESULTS – Sequential Extractions

- Net increase: Cd, Co, Fe, Mn, Ni, Pb, Zn
- Net decrease: K, Na
- No significant change: Al, As, Ca, Cr, Cu, Mg
- Significant differences between north and south
 - Co – exchangeable, carbonate, organic, residual
 - Zn – carbonate, oxide, organic, residual
Water soluble Exchangeable Carbonate Oxide-bound Organic-bound Residual

Percentage (%) of Total Cobalt

North
South

Water soluble: 3.82, 4.13
Exchangeable: 14.06, 17.98
Carbonate: 28.39, 37.09
Oxide-bound: 9.80, 9.20
Organic-bound: 34.85, 25.08
Residual: 9.08, 6.52
Water soluble Exchangeable Carbonate Oxide-bound Organic-bound Residual

Percentage (%) of Total Nickel

North

South

<table>
<thead>
<tr>
<th>Type</th>
<th>North</th>
<th>South</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water soluble</td>
<td>4.17</td>
<td>4.53</td>
</tr>
<tr>
<td>Exchangeable</td>
<td>12.21</td>
<td>11.24</td>
</tr>
<tr>
<td>Carbonate</td>
<td>30.97</td>
<td>31.18</td>
</tr>
<tr>
<td>Oxide-bound</td>
<td>5.61</td>
<td>5.99</td>
</tr>
<tr>
<td>Organic-bound</td>
<td>38.32</td>
<td>38.08</td>
</tr>
<tr>
<td>Residual</td>
<td>8.73</td>
<td>8.99</td>
</tr>
</tbody>
</table>
Water soluble Exchangeable Carbonate Oxide-bound Organic-bound Residual Percentage (%) Total Zinc

North

South

Percentage (%)

Water soluble Exchangeable Carbonate Oxide-bound Organic-bound Residual

0.07 0.11 0.30 0.45 3.67 7.23 3.93 8.61 69.31 82.22 14.30 9.80

Total Zinc
<table>
<thead>
<tr>
<th></th>
<th>Co-N</th>
<th>Co-S</th>
<th>Ni-N</th>
<th>Ni-S</th>
<th>Zn-N</th>
<th>Zn-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td>9.08</td>
<td>6.52</td>
<td>8.73</td>
<td>8.99</td>
<td>9.80</td>
<td>14.30</td>
</tr>
<tr>
<td>Organic-bound</td>
<td>34.85</td>
<td>25.08</td>
<td>38.32</td>
<td>38.08</td>
<td>69.31</td>
<td>82.22</td>
</tr>
<tr>
<td>Oxide-bound</td>
<td>9.80</td>
<td>9.20</td>
<td>5.61</td>
<td>5.99</td>
<td>8.61</td>
<td>7.23</td>
</tr>
<tr>
<td>Carbonate-bound</td>
<td>28.39</td>
<td>37.09</td>
<td>30.97</td>
<td>31.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exchangeable</td>
<td>14.06</td>
<td>17.98</td>
<td>12.21</td>
<td>11.24</td>
<td>3.93</td>
<td>3.67</td>
</tr>
<tr>
<td>Water soluble</td>
<td>3.82</td>
<td>4.13</td>
<td>4.17</td>
<td>4.53</td>
<td>3.67</td>
<td>7.23</td>
</tr>
</tbody>
</table>
CONCLUSIONS

• Trace metals are being effectively removed
 – Seasonality indicated

• Large amounts of trace metals retained in organic-bound fraction
 – Co and Ni also high in carbonate fraction
 – Residual fraction not as large as anticipated

• Explore extraction options that include greater specificity, particularly for sulfides

• Potential mineralogical analyses
 – SEM/TEM show promise and are available
ACKNOWLEDGEMENTS

- USEPA Agreements FY04 104(b)(3) X7-97682001-0 and R-829423-01-0
- Private Landowners
- US Dept. of Education GAANN Program
- ASMR PhD Research Grant 2011
- ASMR Memorial Scholarship, PhD Level 2012
QUESTIONS?
Temperature (°C) and pH

Manganese Concentration (mg/L)

N IN

S IN

N OUT

S OUT

Temp

ORP