LEACHING POTENTIALS OF COAL SPOIL: EFFECTS OF ROCK TYPE AND DEGREE OF WEATHERING

Zenah W. Orndorff and W. Lee Daniels
Virginia Polytechnic Institute and State University
Past surface mine pre-mining analytics focused on:

(1) AMD potential, and (2) Revegetation potential

Now we need to consider:

(3) TDS POTENTIAL
Figure by Carl Zipper

RECLAIMED VALLEY FILL

- Organic horizon forms at surface
- Rainfall Infiltration
- Tree roots
- Low TDS spoil
- High TDS Spoils are isolated from hydrologic flows
- Woody vegetation/mature trees
- Subsurface flow toward stream channel
- Ephemeral channel (as represented by surface contours) flows into larger channel
- Stream
OBJECTIVES

1) To characterize the potential leaching behavior of mine spoil materials, in terms of:
 • pH
 • EC
 • Major cation and anion composition

2) To evaluate leaching behavior with respect to:
 • rock type
 • degree of weathering
Column leaching conducted on 55 diverse spoil samples from lower to middle-Pennsylvanian age strata:

<table>
<thead>
<tr>
<th>ROCK TYPE</th>
<th>WEATHERING</th>
<th># OF SAMPLES</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandstone</td>
<td>unweathered</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(un)weathered</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>weathered</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mudstone</td>
<td>unweathered</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(un)weathered</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>weathered</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Black shale</td>
<td>unweathered</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Mixed spoil</td>
<td>unweathered</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(un)weathered</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

(un)weathered – partially weathered or mix of weathered and unweathered material
BULK SAMPLES (2 5-gal buckets) were each:

- Spread out to air-dry.
- Passed through a 1.25 cm (0.5”) sieve.
- Coarse fraction was crushed to <1.25 cm.
- All material was thoroughly re-blended.
- Subsamples (1200 cm³, with mass recorded) were collected (cone and quarter) for column leaching, to determine pore volume (within columns), and to determine coarse particle size distribution.
- Subsamples were collected and crushed as appropriate for basic characterization including saturated paste pH/EC and total-S.
COLUMN SETUP

- Sample volume: 1200 cm3
- Inside diameter = 7.5 cm
- Height of spoil = ~ 27 cm
- Inside bottom of column:
 - 5 cm (2") sand
 - Whatman #1 filter
 - 0.1 mm nylon mesh
 - perforated plastic disc
- PVC pipe nipple and Tygon tubing for drainage
• Each spoil material was run in triplicate (3 columns/material)
• Unsaturated: samples initially moistened to maximum water holding, then any amount added = amount drained.
• Leaching solution: synthetic acid rain with pH=4.6
 Contains very low amounts of CaSO$_4$, K$_2$SO$_4$, Mg$_2$SO$_4$, NaCl, NaNO$_3$, NH$_4$NO$_3$, (NH$_4$)$_2$SO$_4$, H$_2$SO$_4$, HNO$_3$, H$_3$PO$_4$)
 (Recipe from Halvorson and Gentry, 1990)
• Simulated rainfall was applied 2x/week (Mon/Thurs)
• Each rainfall event = 125 ml (~2.5 cm; 1”)
• Leachate (~125 ml) collected after ~24 hrs (Tues/Fri).
• Samples analyzed for: pH, EC, cations, bicarbonate, sulfate, and chloride
PARTICLE SIZE IN COLUMNS

- <0.25 mm (< med sand) 5 - 24%
- 2 - 0.25 mm (coarse/med sand) 5 - 49%
- > 2 mm (coarse fragments) 45 - 92%
Saturated paste EC

Number of samples per category

EC uS/cm (saturated paste)

- unweathered ss: 13
- weathered ss: 3
- unweathered ms: 11
- weathered ms: 4
- black shale: 4
- all spoils: 55
THREE REPLICATES PER MATERIAL
VERY GOOD REPLICATION

- unweathered SS
- unweathered MS
- BLACK SHALE

EC (uS/cm) vs. leach #
THREE REPLICATES PER SPOIL
VERY GOOD REPLICATION
Most samples had porosity between 25 – 45%.

Both samples <500 uS/cm at 1.8 pore volumes.

EC < 500 uS/cm at 5 vs 8 leach events
SANDSTONE: Weathered spoils tend to equilibrate at lower pH values than unweathered spoils.
MUDSTONE: Weathered spoils tend to equilibrate at lower pH values than unweathered spoils.
OVERALL NO MAJOR pH DIFFERENCES BETWEEN SANDSTONES AND MUDSTONES
HIGHLY ACIDIC pH OBSERVED ONLY FROM BLACK SHALES
SANDSTONE: All weathered and most unweathered samples equilibrated to <500 uS/cm.
MUDSTONE: All weathered and several unweathered samples equilibrated to <500 uS/cm.
Overall: finer grain size = higher EC/greater TDS.

Only one BLACK SHALE equilibrated ~500 uS/cm
TDS ELEMENTAL COMPOSITION: weathered SS

- 826 mg/L
- 293 mg/L
- 29 mg/L

% of TDS by mass

Leach #

Legend:
- Ca
- Mg
- Na
- Al
- K
- Fe
- Cations
- Sulfate
- Chloride
- Bicarbonate
L1: 4.9 mmol+/L

L39: 0.4 mmol+/L

% of TDS by mass

leach #

Ca
Mg
Na
Al
K
Fe
cations
sulfate
Cl
bicarb
TDS RELATIVE ELUTION OVER TIME: MAJOR CATIONS

weathered SS

values scaled to 100%

leach #

Ca 126 mg/L
Mg 91 mg/L
Na 27 mg/L
Al 7 mg/L
K 5 mg/L
EC 1451 uS/cm
TDS RELATIVE ELUTION OVER TIME: MAJOR ANIONS
weathered SS

values scaled to 100%

100%

sulfate 489 mg/L
Cl 77 mg/L
bicarb 23 mg/L
EC 1451 uS/cm

leach #
TDS ELEMENTAL COMPOSITION: unweathered SS

639 mg/L
425 mg/L
232 mg/L

% of TDS by mass

leach #

Ca
Mg
Na
Al
K
Fe
cations
sulfate
Cl
t bicarb
TDS RELATIVE ELUTION OVER TIME - MAJOR IONS
unweathered SS

values scaled to 100%

leach #

Ca 50 mg/L
Mg 83 mg/L
Na 11 mg/L
Al 1 mg/L
K 19 mg/L
sulfate 384 mg/L
Cl 51 mg/L
bicarb 220 mg/L
EC 1002 uS/cm
TDS ELEMENTAL COMPOSITION: Black Shale

% of TDS by mass

leach #

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Ca Mg Na Al K Fe cations sulfate Cl bicarb
TDS RELATIVE ELUTION OVER TIME - ANIONS
Black Shale

values scaled to 100%

leach #

100%
- sulfate: 4261 mg/L
- Cl: 42 mg/L
- bicarb: 12 mg/L
- EC: 5413 uS/cm
Summary

• TDS elution is directly related to the source strata and extent of historic weathering and oxidation.

• TDS elution appears to increase with decreasing grain size; black shales are the most problematic materials.

• Well-weathered materials typically do not appear to be problematic.
Summary

• For most samples, TDS elution was highest in the first few leach cycles, then dropped rapidly and showed little change after 10 – 15 leach cycles (about 2.5 – 5 pore volumes).

• 48 out of 55 samples evaluated in this study equilibrated to EC < 500 uS/cm.
Summary

• Elemental cation composition was dominated by Ca and Mg, with lesser amounts of Al, K, Na and Fe.

• Elemental anion composition was dominated by sulfate and bicarbonate, with lesser amounts of chloride. For several samples, sulfate was initially dominant, but over time bicarbonate became the dominant anion.
Acknowledgements

Direct financial support by:
Powell River Project
ARIES

Sample access was provided by several mines throughout Va, W. Va, Ky and Tn; sampling assistance was provided by UKY (Chris Barton and Carmen Agouridis), WVU (Jeff Skousen), and OSM (Whitney Nash).

Lab and field support was provided by personnel from the Marginal Soils Research Lab, Va Tech. Additional lab support was provided by Civil Engineering, Va Tech.
A portion of this work was sponsored by the Appalachian Research Initiative for Environmental Science (ARIES). ARIES is an industrial affiliates program at Virginia Tech, supported by members that include companies in the energy sector. The research under ARIES is conducted by independent researchers in accordance with the policies on scientific integrity of their institutions. The views, opinions and recommendations expressed herein are solely those of the authors and do not imply any endorsement by ARIES employees, other ARIES-affiliated researchers or industrial members. Information about ARIES can be found at http://www.energy.vt.edu/ARIES