Geotechnical-Geophysical Void Mapping and Foamed-Sand Backfilling of the Rapson Coal Mine, Colorado Springs, Colorado – Case Study

Kanaan Hanna, Jim Pfeiffer & Steve Hodges, Zapata Incorporated
Al Amundson, Colorado Division of Reclamation, Mining and Safety
Richard Palladino, Cellular Concrete Solutions
Tom Szynakiewicz, Hayward Baker

Joint Conference
2nd Wyoming Reclamation and Restoration Symposium
30th Annual Meeting of the American Society of Mining and Reclamation
Focus

- Project Site Location & Subsidence/Sinkhole Problems
- Geotechnical-Geophysical Methodology
 - Subsurface data acquisition and interpretation
 - Exploratory boring
 - Laser, sonar and video void investigation
- Colorado DRMS/Hayward Baker Ground Modification Treatment
 - Low mobility grouting or compaction grouting (LMG) beneath houses
 - Foamed sand slurry backfilling of large underground opening
- ZAPATA Video Monitoring of the Foamed-Sand Backfilling of the Rapson Mine

ZAPATA Services

- A/E & Construction Management
- Munitions Response Services
- Environmental Engineering & Remediation
- Mining
- Water Resources
- Energy
Country Club Circle (CCC) Residential Neighborhood

Historic subsidence

Trough subsidence

Sinkhole mitigation
Project site conditions required:

- A combination of several geophysical methods to provide reliable information

- Geology
 - 40 to 50 ft of sand

- Cultural noise

- Site conditions & accessibility
 - Buried utilities

- Target types & depth
 - B & A seams
Three seismic techniques were used:
1. Surface seismic, &
2. Two borehole seismic.

MASW (surface) survey:
- Shallow subsurface evaluation
- Target drilling

RVSP (borehole-surface) survey:
- Mine working delineation
- Target drilling

XHT (borehole-borehole) Survey:
- Pre & post grouting evaluation

Exploratory borings:
- Ground truthing

Supplemental tools:
1. Geophysical logging
2. Void mapping tools:
 - Laser,
 - Video camera, &
 - Sonar.
Site Map and Geophysical Survey Layout

MASW Lines 1 - 8

RVSP

Mine maps do not exist

XHT, laser, video
Land streamer setup: 48 channel, 4.5 Hz geophones

iVi Envirovibe seismic source

Recording vehicle (doghouse)
MASW data plots - Lines 3 & 8
RVSP setup: 136 channels, 40 Hz geophones, 2 ft spacing
Survey lines crossing street and driveway

Survey line crossing residence yard
Recording vehicle (doghouse)

Airgun seismic source
RVSP data plot – “A” seam mine working delineation: Borehole CCC3
Drilling and sampling

- CSM 75 drill rig setup
- Drilling through ~ 40 ft sand
- Drilling through ~ 7 ft coal
- 4 inch PVC casing installation
- Casing/grout setup w/ 10% bentonite
Standard penetration tests (SPTs)
Geophysical logs – Sonic, bulk density, resistivity
Geologic cross section (A-A’)

- Void (6-7 ft)
- No cutting
- Rubble Zones
Geologic cross section (B-B’)

Geologic Profiles
Mine Workings Void Investigation – Data Acquisition

Laser, video camera, and sonar – Field setup

- Laser – Void scanning
- Video camera – Void imaging
- Sonar – Void scanning
Laser scans – Borehole CCC6

Interpreted haulageway
Size: 230 ft L, 10 ft W, 7 ft H
Volume: 511 yd³

X-cuts
Intact rib line
Mine Workings Void Investigation – Laser Results

Laser 3-D model of haulageway (main entry)
Borehole CCC6

Laser 2D interpretation plan view
Borehole CCC13
Video images interpretation – Borehole CCC6

Borehole CCC6

Wood Post
Rubble on Mine Floor

Pillar Corner
X-cut

SE View

Roof Line
Intact Pillar Corner
X-cut
Mine Floor

W View

Borehole CCC13

Immediate Roof Failure

Intact Pillar
W Rib
Wood Post
X-cut

N View

Rubble Pile on Mine Floor

Intact Pillar
E Rib
X-cut

NE View

Intact Pillar Rib
Haulageway

W-SW View
Reconciliation of interpreted geophysical results w/ historic base mine maps

Alignment of the Rapson No. 2 historic base mine map and haulageway entry

- RVSP results: The position of the mine workings in the north-northeast was shifted 25 ft north.

- Laser results: The position of the re-constructed haulageway was shifted 25 ft south and 17 ft west.
Colorado DRMS applied two ground stabilization techniques:

- Low mobility grouting (LMG) beneath houses, and
- Foamed sand slurry in entries/haulageways

Hayward Baker performing ground stabilization (LMG) beneath a house area:

- Injection at 600 psi at the bottom of the hole, and
- 200 psi near the top of the hole
- Grout amount per house averaged ~ 348 yd³ @ cost of ~ $66,600
Colorado DRMS applied two ground stabilization techniques:
- Low mobility grouting (LMG) beneath houses, and
- Foamed sand slurry of large mine opening (entries/haulageways)

Hayward Baker performed stabilization in large mine opening using Geofoam™ developed and supplied by Cellular Concrete:
- The foam is generated on site and mixed with sand in a concrete mixer truck
- The foam takes the place of water, allowing the sand to flow similar to sand-and-water slurry
- Approximately 3 yd³ of foam was mixed with 6 yd³ of damp sand for ~ 5 minutes,
- The foamed sand slurry was then gravity fed down the 4-in PVC casing
- The flow of sand was monitored by the video camera from a nearby borehole, approximately 50 ft away
- The foamed sand slurry filled the void to the approx. quantity estimated by the laser scans (511 yd³)
- The cost of the foam sand slurry is approx. half the cost per yd³ of the LMG treatment
Video images from CCC13 of foamed sand slurry backfilling in Borehole CCC6
Foamed Sand Slurry Backfilling
Country Club Circle
Colorado Springs, Colorado

Prepared By:

BLACKHAWK
A DIVISION OF ZAPATA

For:

cellular concrete solutions
COLORADO DIVISION OF RECLAMATION MINING & SAFETY
HAYWARD BAKER
Geotechnical Construction