Passive Treatment of Coal Mine Drainage

By Robert S. Hedin, Robert W. Narin, and Robert L. P. Kleinmann
Effective Passive Treatment of Coal Mine Drainage

Bob Hedin, Ted Weaver, Neil Wolfe, and George Watzlaf
Hedin Environmental
Pittsburgh, PA
Hedin Environmental

- Formed in 1994
- specialize in AMD assessments and passive treatment
- Clients include watershed associations, non-profits, PADEP, mining companies, engineering companies, bonding companies
- 50 installed passive treatment systems based on our designs
Components of an Effective Passive Treatment System

- Proper selection of technology (IC 9389)
- Proper sizing (IC 9389)
- Consideration/mitigation of possible problems
- Proper construction
- Routine maintenance and sampling
- Major maintenance
Figure 12.—Flow chart showing chemical determinations necessary for the design of passive treatment systems.
Characterize Mine Water

Net alkaline:
- DO, Fe$^{3+}$, Al all < 1 mg/L (high Fe$^{2+}$)
- Anoxic Limestone Drain
- Net Alkaline
 - Ponds
 - Wetland
 - Mn
 - Oxic Limestone Bed
 - Mn

Net acid:
- DO, Fe$^{3+}$, Al any > 1 mg/L
- Vertical Flow Pond
 - Ponds
 - Wetland
 - Oxic Limestone Bed (drainable)
 - Fe < 10 mg/L

Final Discharge

Repeat As Needed
Passive Technologies Used by HE

• **Ponds**
 – oxidize Fe, settle solids, mixing (IC 9389)

• **Wetlands**
 – polishing, Mn and solids removal; (IC 9389)

• **Anoxic limestone drains**
 – alkalinity generation (IC 9389)

• **Oxic limestone beds (new)**
 – alkalinity generation, metal removal, polishing

• **Vertical flow ponds (SAPS, Anaerobic Wetlands) (new)**
 – alkalinity generation and metal removal
Four Examples of the Reliable Use of these Technologies
Characterize Mine Water

Net alkaline

- Anoxic Limestone Drain
 - DO, Fe$^{3+}$, Al all < 1 mg/L (high Fe$^{2+}$)
 - Ponds
 - Wetland
 - Oxid Limestone Bed

Net acid

- DO, Fe$^{3+}$, Al any > 1 mg/L
 - Vertical Flow Pond
 - Ponds
 - Wetland
 - Ponds
 - Oxid Limestone Bed (drainable)

Final Discharge

Mn
Marchand Mine Passive System

Ponds and Wetlands
Fe$^{2+}$ + HCO$_3^-$ + O$_2$ \rightarrow FeOOH + H$_2$O
Marchand system, average conditions, 2006 - 2013

<table>
<thead>
<tr>
<th></th>
<th>Flow</th>
<th>pH</th>
<th>Alk</th>
<th>FeT</th>
<th>Mn</th>
<th>Al</th>
<th>SO\textsubscript{4}</th>
<th>TSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influent</td>
<td>1,876</td>
<td>6.3</td>
<td>335</td>
<td>72.4</td>
<td>1.2</td>
<td><0.1</td>
<td>1,136</td>
<td>25</td>
</tr>
<tr>
<td>Pond F out</td>
<td>7.1</td>
<td>230</td>
<td>12.4</td>
<td>1.1</td>
<td><0.1</td>
<td>1,117</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Effluent</td>
<td>7.8</td>
<td>216</td>
<td>1.0</td>
<td>0.5</td>
<td><0.1</td>
<td>1,160</td>
<td></td>
<td><6</td>
</tr>
</tbody>
</table>

Fe, mg/L

- **Influent**
- **Effluent**

![Graph showing Fe concentrations over time](image-url)
Maintenance of the Marchand System

Fe sludge accumulation

• 575 ton/yr Fe solids
• 575,000 gallons/yr Fe sludge
• 7.5% loss of storage volume per year
• In June 2012 the system’s theoretical retention had decreased from 74 hr to 46 hr
• June 2012 sludge in first three ponds was removed
influent
Sewickley Creek
Pond
A
Pond
B
Pond
C
Pond
D
Pond
E
Pond
F
FeOOH recovered in 2012
Characterize Mine Water

Net alkaline

- DO, Fe$^{3+}$, Al all < 1 mg/L (high Fe$^{2+}$)
- Anoxic Limestone Drain

Net Alkaline

Ponds

Wetland

Net acid

DO, Fe$^{3+}$, Al any > 1 mg/L

DO, Fe$^{3+}$, Al any > 1 mg/L
Fe < 10 mg/L

Vertical Flow Pond

Repeat As Needed

Ponds

Oxic Limestone Bed (drainable)

Oxic Limestone Bed

Mn

Final Discharge

Mn
SR-114D Passive System

Anoxic Limestone Drain
1,300 ton limestone
120 gpm flow with 35 mg/L Fe$^{2+}$
SR 114D System,
Butler County, PA

\[
\text{Fe}^{2+} + \text{Mn}^{2+} + \text{H}^+ \xrightarrow{\text{limestone anoxic}} \text{Fe}^{2+} + \text{Mn}^{2+} + \text{Ca}^{2+} + \text{HCO}_3^-
\]
Limestone Dissolution in ALD 1995-2014

• ALD has generated 375 ton CaCO$_3$
• ALD has dissolved 416 tons limestone
• 32% of original 1,300 tons
• Theoretical average retention time has decreased from 10.8 hr to 7.4 hr
SR-114D ALD Maintenance

• No maintenance to date (19 years)
• ALD will need rehabilitated in next 5-10 years
 – Clean remaining limestone
 – Replaced dissolved limestone
Characterize Mine Water

Net alkaline

DO, Fe$^{3+}$, Al all < 1 mg/L (high Fe$^{2+}$)

Anoxic Limestone Drain

Ponds

Net Alkaline

Wetland

Oxic Limestone Bed

Mn

Net acid

DO, Fe$^{3+}$, Al any > 1 mg/L

Vertical Flow Pond

High Fe$^{2+}$

Repeat As Needed

Ponds

Oxic Limestone Bed (drainable)

Fe < 10 mg/L

Ponds

Mn

Wetland

Final Discharge
Anna S Mine
Passive Treatment Complex

Vertical Flow Ponds
Anna S passive systems, 2004 - 2014

<table>
<thead>
<tr>
<th></th>
<th>Flow</th>
<th>pH</th>
<th>Alk</th>
<th>Acid</th>
<th>Fe</th>
<th>Al</th>
<th>Mn</th>
<th>SO$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gpm</td>
<td>s.u.</td>
<td>mg/L CaCO$_3$</td>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Anna System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1 influent</td>
<td>216</td>
<td>3.1</td>
<td>0</td>
<td>145</td>
<td>7</td>
<td>13</td>
<td>8</td>
<td>356</td>
</tr>
<tr>
<td>S2 influent</td>
<td>31</td>
<td>3.8</td>
<td>0</td>
<td>33</td>
<td><1</td>
<td>2</td>
<td>6</td>
<td>134</td>
</tr>
<tr>
<td>VFPs out</td>
<td>na</td>
<td>7.0</td>
<td>150</td>
<td>-114</td>
<td>6</td>
<td><1</td>
<td>7</td>
<td>323</td>
</tr>
<tr>
<td>Final</td>
<td>na</td>
<td>7.4</td>
<td>129</td>
<td>-99</td>
<td>1</td>
<td><1</td>
<td>4</td>
<td>316</td>
</tr>
<tr>
<td>Hunters Drift System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD influent</td>
<td>234</td>
<td>2.8</td>
<td>0</td>
<td>354</td>
<td>35</td>
<td>34</td>
<td>7</td>
<td>556</td>
</tr>
<tr>
<td>VFPs out</td>
<td>na</td>
<td>6.8</td>
<td>199</td>
<td>-126</td>
<td>20</td>
<td><1</td>
<td>5</td>
<td>554</td>
</tr>
<tr>
<td>Final</td>
<td>na</td>
<td>7.4</td>
<td>144</td>
<td>-112</td>
<td><1</td>
<td><1</td>
<td>2</td>
<td>509</td>
</tr>
</tbody>
</table>
Alkalinity, mg/L

Hunters system final discharge
Anna System final discharge
Major Maintenance

• Rehabilitate substrates that contribute to system’s effectiveness (alkalinity generation)
• Alkaline Organic Substrate: replenish
• Limestone Underdrain: clean and replenish
Characterize Mine Water

Net alkaline

- DO, Fe$^{3+}$, Al all < 1 mg/L (high Fe$^{2+}$)
- Anoxic Limestone Drain

Net alkaline

- Ponds
- Wetland
- Oxic Limestone Bed

Net acid

- DO, Fe$^{3+}$, Al any > 1 mg/L
- Vertical Flow Pond

Net acid

- Ponds
- Wetland
- Oxic Limestone Bed

DO, Fe$^{3+}$, Al any > 1 mg/L
- Oxic Limestone Bed (drainable)

Repeat As Needed

Final Discharge
Tangascootack #1 Passive System

Oxic Limestone Bed (drainable)
Water Level Control box with bottom gate valve

Computer

Solar Panel
Tangascootack #1 system, Nov 2010 – Apr 2014

<table>
<thead>
<tr>
<th></th>
<th>Flow</th>
<th>pH</th>
<th>Alk</th>
<th>Acid</th>
<th>Fe</th>
<th>Al</th>
<th>Mn</th>
<th>SO(_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflow</td>
<td>na</td>
<td>4.0</td>
<td>0</td>
<td>89</td>
<td>0.2</td>
<td>11.1</td>
<td>25.9</td>
<td>927</td>
</tr>
<tr>
<td>DLB out</td>
<td>45</td>
<td>7.3</td>
<td>197</td>
<td>-169</td>
<td>0.1</td>
<td>0.2</td>
<td>1.7</td>
<td>968</td>
</tr>
</tbody>
</table>
Solids Management

• Routine draining removes portion of solids
• Infrequent cleaning of stone removes remaining solids
Pittsburgh Botanic Garden DLB solids basin during end of draining
Pittsburgh Botanic Garden DLB solids basin during end of draining

71% of the Al retained in the DLB during routine operations released during draining
Major Maintenance

• Clean limestone aggregate every 3-10 years
• Established procedures and costs
Summary

• Highly successful passive treatment of discharge with large range of flow rates and chemical conditions
• Effective treatment obtained year-round
• All systems require O&M, but the needs are modest and with planning can be implemented cost-effectively
A graph showing Mn, mg/L concentrations over time from August 2010 to August 2014. Two lines are shown: blue for influent and red for DLB effluent. The influent line shows fluctuations from approximately 0 to 35 mg/L, while the effluent line is mostly close to 0.
<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>Fe</th>
<th>Mn</th>
<th>Al</th>
<th>Fe</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influent</td>
<td>13.0</td>
<td>0.5</td>
<td>0.8</td>
<td>13.8</td>
<td>0.44</td>
<td>0.93</td>
</tr>
<tr>
<td>Effluent</td>
<td>0.7</td>
<td>0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.09</td>
<td>0.14</td>
</tr>
<tr>
<td>Retained</td>
<td></td>
<td></td>
<td></td>
<td>13.4</td>
<td>0.35</td>
<td>0.79</td>
</tr>
<tr>
<td>Draining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removal</td>
<td>12-239</td>
<td>0.6-8.1</td>
<td>0.2-0.8</td>
<td>9.5</td>
<td>0.35</td>
<td>0.10</td>
</tr>
<tr>
<td>% removed</td>
<td></td>
<td></td>
<td></td>
<td>71%</td>
<td>99%</td>
<td>13%</td>
</tr>
<tr>
<td>% retained</td>
<td></td>
<td></td>
<td></td>
<td>29%</td>
<td>1%</td>
<td>87%</td>
</tr>
</tbody>
</table>
Pittsburgh Botanic Garden DLB

- Poured concrete tank
- 100’ X 20’ X 5’
- 450 ton limestone
- Agri Drain SDS system
- Drains empty once/week

Routine conditions

<table>
<thead>
<tr>
<th></th>
<th>In</th>
<th>out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow, gpm</td>
<td>na</td>
<td>4-11</td>
</tr>
<tr>
<td>pH</td>
<td>3.3</td>
<td>7.6</td>
</tr>
<tr>
<td>Acidity</td>
<td>130</td>
<td>-188</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>0</td>
<td>221</td>
</tr>
<tr>
<td>Al, mg/L</td>
<td>13.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Mn, mg/L</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>Fe, mg/L</td>
<td>0.5</td>
<td><0.1</td>
</tr>
</tbody>
</table>