New Progresses of Coal Mining Area Land Reclamation in China

Wu Xiao
Zhenqi Hu

1. Institute of Land Reclamation & Ecological Restoration
 China University of Mining and Technology (Beijing)
2. Engineering Research Center of Mining Environment & Ecological Safety, Ministry of Education
Outline

• 1. Introduction
• 2. New progress of land reclamation technologies in China
 ➢ Progress in eastern China
 ➢ Progress in western China
• 3. Policies and Laws improvement
• 4. Outlooks and prospects
• 1. Introduction
1. Introduction

Precipitation in US
1. Introduction

Precipitation in China
1. Introduction
1. Introduction

Coal resources distribution in China
China’s coal production was 3.5 billion tons in 2011.

92% come from underground mining.

Coal yield and growth rate from 1990 to 2010 in China.
1. Introduction

Mining subsidence in Gansu Province

Mining subsidence in Shanxi Province
1. Introduction

Zhungeer Surface Coal Mine in Inner Mongolia
1. Introduction

Mining subsidence in Jining coal field
1. Introduction

Mining subsidence induced landslides in Sichuan Province

Groundwater falls in Chongqing

Southern region
Northwest: Mining subsidence induced cracks and fissures; Soil erosion; Acid coal waste dumps spontaneous combustion; Occupation of land by surface mining.

Southern: Mining subsidence induced landslide and mudslides, groundwater losses.

Eastern: Mining subsidence induced ponds area, farmland lose, Village movements.
• 2. New progress of land reclamation technologies in China
2. New progress of land reclamation technologies in China

- Concurrent Mining and Reclamation (CMR)
- Yellow river sediments backfilling
- Landscape reclamation of farmland and comprehensive utilization

Eastern China

Western China

- Monitoring and Assessment of mining subsidence in western China
- Topsoil alternatives based on bedrock
(1) Concurrent Mining and Reclamation (CMR)

Reclamation after land subsided

Reclamation before or during land subsided

CMR
Eastern China

(1) Concurrent Mining and Reclamation (CMR)

Subsidence prediction for various stages:

Proportions of cultivated land were 100%, 72.5%, 67.3%, 14.4%, respectively.

Excavation of No.4 coal seam led to a lot of farmland loss because of water accumulation due to mining subsidence.
The percentage of reclaimed farmland could reach 78.3%, 73.3% and 40.7% at the stage (b), (c) and (d) respectively.
Eastern China

Concurrent Mining and Reclamation (CMR)

CMR is an innovative technology, also an advanced concept and theory.

CMR technology implementation in Longgu coal mine, Shandong Province.

1. Topsoil removal
2. Levelling
3. Barrier built
(2) Yellow river sediments backfilling
The Yellow River basin has an east-west extent of 1900 km (1,180 miles) and a north-south extent of 1100 km (684 miles). Total basin area is 752,443 km2 (290,520 mile2).

Since its middle section flows through China's Loess Plateau region, a large amount of sediments carried along. Thus, it is also regarded as the river with the most sediment in the world.
Jining City locates in Shandong province, close to Yellow river. It is the one of big coal-bases in China, Yanzhou coal company is in this city.

Subsided land: 24575.79 hm² (2009)
Predict:
2015: 47199.34 hm²
2020: 68100.53 hm²
1. Position and method to take sediments from Yellow river

2. Sediment transportation methods

3. Filling, drainage, soil reconstruction and restoration of high quality farming
Eastern China

Short distance filling reclamation case studies with Yellow River sediments in Dezhou city, Shandong Province

Topsoil stripping → Filling strip → Taking sediment
Filling and drainage → Sediment → Sediment leveling
Topsoil covering → Land leveling → Reclaimed Land

Being reclaimed
Subsided ponds was also being utilized as solar photovoltaic power plant. Huahan solar photovoltaic power plant in southeast Jining city is Asia's largest thin-film solar photovoltaic power plant. The total investment is 900 million Yuan, the total size of the solar power plant would be 30 MW.
(1) Monitoring and Assessment of mining subsidence in western China

- Zhenqi Hu from China University of Mining and Technology, Beijing
- Zhengfu Bian and Shaogang Lei from China University of Mining and Technology, Xuzhou
- Xiao He from Inner Mongolia Agricultural University
- Hongmei Zhao from Chinese Academy of Geological Science
(1) Monitoring and Assessment of mining subsidence in western China

Remote sensing was employed to monitoring LUCC in Shendong coal field.
(1) Monitoring and Assessment of mining subsidence in western China

Observation station was built to monitoring ground movement induced by underground mining.

Dynamic fissures development was firstly investigated by CUMTB in 2010-2013.
Western China

(1) Monitoring and Assessment of mining subsidence in western China

Soil moisture monitoring in mining subsidence area by Neutron probe
Western China

(1) Monitoring and Assessment of mining subsidence in western China

Ground Penetrating Radar (GPR) and Photogrammetry was used to investigate fissures underground and its dynamic development on the ground.
(1) Monitoring and Assessment of mining subsidence in western China

Conclusions:

1. In Daliuta coal field, vegetation coverage changed from 52.23% in 1994 to 53.36% in 2011. Mining activities DO NOT have a significant influence on vegetation coverage.

2. Precipitation and vegetation cover was significantly correlated, the correlation coefficient between 0.514 to 0.747.

3. Dynamic ground fissures were monitored, an open-close-open-close (2 cycles) pattern was recorded, the mechanism was under research.

4. Disturbed land has a self-healing in the bottom of the subsidence basin, and should be man-restoration in the edges.
(2) Topsoil alternatives based on bedrock
Western China

(2) Topsoil alternatives based on bedrock

(1) Thin topsoil;
(2) Soil loss and degradation during stripping, stockpiling and backfilling;
(3) A lot of slope reclamation area increased reclamation area;

The shortage of topsoil;
Looking for suitable topsoil substitute material is very necessary.

In western China:
(1) The thick coal bed
(2) Shallow buried depth
(3) Open-pit mining.
Coal mines in this area mostly locate in the arid area, where the ecological environment is very fragile, and the coal mining aggravates the process of desertification and soil erosion.
CAN WE FIND TOPSOIL ALTERNATIVES?
Western China

(2) Topsoil alternatives based on bedrock

Fig. 2 The study area’s schematic diagram of geologic section
(2) Topsoil alternatives based on bedrock

Procedures:

Field investigation and observation of overburden characteristics, topsoil alternatives was selected based on geologic section.

Physical and chemical properties, nutrient and heavy metal content in the selected overburden layer was measured in laboratory.

Pot experiments were implemented to determine whether obstacle factor exist for crops.

The optimistic ratio of Vermiculite, Nitro humic, and straw was obtained by orthogonal pot experiment to improve Topsoil alternatives.
2) Topsoil alternatives based on bedrock

![Graph of height growth over days of observation for different treatments.](image1)

![Bar chart showing water stable aggregates content by size class.](image2)
Western China

(2) Topsoil alternatives based on bedrock

Case study area
3. Policies and Laws improvement

Milestones of land reclamation in China
3. Policies and Laws improvement

- **1989**
 - "Stipulation on Land Reclamation" (SLR)

- **1990s**
 -

- **2000s**
 - 1. "Land Reclamation Regulation" (LRR)
 - 2. "Implementation Measures on Land Reclamation Regulation" (IMLRR)

- **2010s**
 - "Completion Standards on Land Reclamation Quality" (CSLRQ)

Important policies and laws
• 4. Outlooks and prospects

 • Land strategies are different because of the natural and geological aviation in China. By the past 5 years, many important laws and regulation has successively promulgated, and promote land reclamation greatly. Land reclamation research are focused on prime farmland protection in eastern China and ecological restoration in western and south China.

 • With the rapidly economic development, corporate social responsibility and public awareness advance. More and more attention has been paid to land reclamation area. Land reclamation are and will still be one of the most important part of coal industry in the future, more efforts and funds are expected to get involved.
Theme: Legislation, technology and practice of mine land reclamation

The LRER 2014, Beijing International Symposium on Land Reclamation and Ecological Restoration will be held from 16th to 19th October, 2014 at Beijing, China. This symposium is the second land reclamation international conference in China, the first one was Beijing International Symposium on Land Reclamation (ISLR 2000), which has a profound influence on land reclamation in China. After more than 10 years, the research concerning land reclamation has improved a lot both in China and abroad, thus, the main purposes of LRER 2014 are: Promoting communication of land reclamation and ecological restoration technology and experience internationally; Advancing and renovating of reclamation and ecological restoration technology and practice; Accelerating international collaboration in this field.

Welcome to LRER 2014, 16th to 19th October, 2014
• Thank you!!

Questions or comments