Sediment Metal Concentrations in Selected Coves of Grand Lake O’ the Cherokees

Center for Restoration of Ecosystems and Watersheds
School of Civil Engineering and Environmental Science
The University of Oklahoma, Norman, OK
Background
2012 Capstone Project

- Outgrowth of long-term cooperative efforts
- Focus on reservoir sediment contamination
- Historic mining impacts
- Management implications
Grand Lake O’ the Cherokees

- Third largest reservoir in Oklahoma
- Beneficial uses
 - Hydroelectric power
 - Flood control
 - Water supply
 - Recreation
 - Fish and wildlife propagation
- Operated by GRDA

- 10,298 mi² watershed
- 46,500 surface acres
- 1,300 shoreline miles
- Pensacola Dam (1940)
- Largest multiple arch dam
Grand Lake O’ the Cherokees

- Premier recreation destination
- Near shore development
 - Boat docks
 - Sediment dredging

One weekend
$26 million economic impact
Tri-State Mining District

- 1200 mi² mined
 ~1838-1970

- Mississippian sulfides
 - Galena (PbS)
 - Sphalerite (ZnS)

- Four USEPA CERCLA Sites
Scope & Objectives
Project Scope

- Lake shore development often requires sediment dredging

- GRDA Shoreline Management Plan
 - Total metals concentrations compared to Sediment Quality Guidelines (SQGs)

- Examine sediment metal concentrations
Project Objectives

- Focus on metals associated with the TSMD
- Compare sediment metal concentrations to both general and site-specific SQGs
- Compare sediment metal concentrations in developed and undeveloped coves
Sampling Locations

Duck Creek Cove

Drowning Creek Cove
Duck Creek
Drowning Creek
Methodology
Water – 1 m above sediment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>In situ physical parameters</td>
<td>X</td>
</tr>
<tr>
<td>Total metals*</td>
<td>X</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>X</td>
</tr>
<tr>
<td>Nitrate</td>
<td>X</td>
</tr>
<tr>
<td>Nitrite</td>
<td>X</td>
</tr>
<tr>
<td>Ammonia</td>
<td>X</td>
</tr>
<tr>
<td>Phosphate</td>
<td>X</td>
</tr>
<tr>
<td>Turbidity</td>
<td>X</td>
</tr>
</tbody>
</table>

*Al, As, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Zn
Sediment

- 2” diameter gravity corer
- Incremented 2” sections

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture content</td>
<td>X</td>
</tr>
<tr>
<td>Organic matter</td>
<td>X</td>
</tr>
<tr>
<td>Total metals</td>
<td>X</td>
</tr>
<tr>
<td>Total mercury</td>
<td>X</td>
</tr>
</tbody>
</table>
Results
Water Quality Results

- Phosphate > in-lake criteria in all samples
- Ammonia and nitrate < in-lake criteria
- Cd > chronic criteria at DCK-1
Sediment Quality Guidelines

- Adverse effects not expected to occur
- Neither predicted to be toxic or nontoxic
- Adverse effects expected to occur more often than not

Threshold Effect Concentration
Probable Effect Concentration

Measured Concentration

Depth
Zn > TEC at 9 sites
Zn > PEC at 1 sites
Zn< T-PEC at all sites
Cd > TEC at 9 sites
Cd < T-PEC at all sites
Pb > TEC at 8 sites
Pb < T-PEC at all sites
<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cd Concentration</td>
<td>0.0001915</td>
</tr>
<tr>
<td>0-2 Inches increment Cd</td>
<td>0.007787</td>
</tr>
</tbody>
</table>

p-values < 0.05
<table>
<thead>
<tr>
<th>Parameter</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Pb Concentration</td>
<td>3.652e-0.5</td>
</tr>
<tr>
<td>0-2 Inches Increment Pb</td>
<td>0.003615</td>
</tr>
</tbody>
</table>
Mean [Zn] (mg/kg)

- **Parameter**: Total Zn Concentration
- **p-value**: $4.504e^{-07}$

0-2 Inch Increment [Zn] (mg/kg)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Zn Concentration</td>
<td>$4.504e^{-07}$</td>
</tr>
<tr>
<td>0-2 inches increment Zn</td>
<td>0.02533</td>
</tr>
</tbody>
</table>

p-values < 0.05
Conclusions – Water

- Lake water quality
 - Turbidity and phosphorus exceed applicable criteria
 - Cd > chronic criteria in one sample; requires rechecking
Conclusions – Sediment Metals

- Shoreline Management Plan dictates further action if $[M+] >$ general TEC

- Some $[M+]$ exceed general TEC and PEC, but none exceed site-specific PEC

- Metals concentrations at Duck Creek (developed) are greater than Drowning Creek (undeveloped)
For site-specific SQGs, none of the sediment increments exceeded the PEC values.

<table>
<thead>
<tr>
<th></th>
<th>%G-TEC Exceedance</th>
<th>% G-PEC Exceedance</th>
<th>% T-PEC Exceedance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DCK</td>
<td>DRN</td>
<td>DCK</td>
</tr>
<tr>
<td>Cd</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Pb</td>
<td>91</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Zn</td>
<td>100</td>
<td>67</td>
<td>38</td>
</tr>
</tbody>
</table>
Recommendations

- Further sediment research needed
 - Sample more coves
 - Collect more cores
 - Complete particle size analyses
 - Age-date cores
 - Assess native soils

- Disposal plans must be considered prior to dredging
Acknowledgements

- Jacklyn Jaggars
- Roger Simmons
- Darrell E. Townsend II
- Michael Willhoite
- Sam Ziara
- Lake Patrol Officers
- GRDA EEC
Questions?

http://CREW.ou.edu