Geochemical Modeling to Assess Impacts of Chat Fine Injections on Aquifer Quality at the Tar Creek Superfund Site, Oklahoma

Brian Schroth, B.T. Thomas, Scott Irving
CH2M HILL
Study Region
Legacy of Tri-State Lead-Zinc Mining
Study Objectives

• Reduce dust hazard by removing chat piles
• Separate coarse chat (usable for road base) from fine chat
• Inject fine chat slurry into mine rooms below piles
• Conduct long-term pilot study to assess feasibility and monitor water quality
• Sooner Pile chosen as test area
• Use geochemical modeling to
 – Verify observed results
 – Predict long term effects on water quality
Chat Size Fraction Separator ("Sandscrew")
Chat Size Fraction Separator ("Sandscrew")
Injection of Fines Slurry
Geochemistry and Transport Modeling
Geochemical Signatures

• Boone Aquifer
 – Mineralized zones: Ca-SO₄, high TDS, trace metals
 – Non-mineralized: variable chem, low TDS, low trace metals

• Mine Pool Water
 – Ca-SO₄, Higher TDS than Boone, trace metals

• Rubidoux
 – Ca/Mg-HCO₃/SO₄, low TDS, very low trace metals
TDS vs. pH

Boone Chat Pile Mine Pool Rubidoux Sandscrew Discharge Tailings Pond

Total Dissolved Solids, mg/L vs. pH
Zinc vs. Bicarbonate Pct.

- Zinc, mg/L
- Bicarbonate, as percentage of anions

Locations:
- Boone
- Chat Pile
- Mine Pool
- Rubidoux
- Sandscrew Discharge
- Tailings Pond

Graph shows the relationship between Zinc concentration and Bicarbonate percentage across different locations.
Chat and Chat Fines Composition – XRD Analysis

- Bulk chat primarily comprised of chert (amorphous SiO$_2$) – over 90%
- Minor carbonates (calcite, dolomite)
- Trace sulfide, oxide, clay minerals
- Fine fractions shown to have higher concentrations of metals
Chat and Chat Fines
Modeled Trace Metal Minerals

• **Primary Minerals**
 – Sphalerite (ZnS); Cd associated
 – Galena (PbS)
 – Pyrite (FeS$_2$); As associated

• **Secondary Minerals**
 – Carbonates of Zn, Cd, Pb, and Fe
 – Sulfates of Pb, Fe
 – Minor silcates (hemimorphite = Zn source)
 – Oxides of Cd, Fe (plus adsorbed metals on FeO’s)
Reactions During Injection

• Chat fines mixed with mine pool water
 – Dissolves minerals in fines, releasing trace metals
 – Carbonates buffer acidity released by sulfide oxidation
 – Mixing at surface ensures oxygen presence in solution
 – Process modeled with PHREEQC
Reactions During Injection (cont’d)

• Chat fines slurry injected into mine pool
 – Oxygen-rich water mixes locally with more reduced mine pool water and iron oxides precipitate
 – Iron oxides act as co-precipitates with and adsorbents for trace metals (especially arsenic and lead)
 – Process modeled with PHREEQC
PHREEQC Model

- **Observed minerals in chat are added to Sooner Pilot Study supply water (MMB2)**
 - Zinc, lead, and cadmium sulfides
 - Calcite and dolomite
 - Resulting water reasonably resembles slurry water injected into mine pool

- **Slurry water is mixed with mine pool water in various proportions with mineral precipitation and dissolution controls**
 - Solubility controlled by sulfate and carbonate minerals
 - Result resembles injection well samples if ratio of mine pool water to slurry water is 2:1
PHREEQC Model Results

Dissolution of cadmium, lead, and zinc sulfides and calcium/magnesium carbonate; Precipitation of calcium, zinc, and cadmium carbonates and of iron oxide

<table>
<thead>
<tr>
<th>Description</th>
<th>Sample ID</th>
<th>Date</th>
<th>Metals in ug/L</th>
<th>Fe</th>
<th>Zn</th>
<th>Cd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mine pool water used to slurry fine chat</td>
<td>MMB2</td>
<td>07/17/08</td>
<td></td>
<td>391</td>
<td>25,900</td>
<td>391</td>
<td>276</td>
</tr>
<tr>
<td>Water portion of fine chat slurry in sandscrew tank</td>
<td>SNDSCR</td>
<td>07/17/08</td>
<td></td>
<td><25</td>
<td>20,300</td>
<td>411</td>
<td>294</td>
</tr>
<tr>
<td>PHREEQC simulation results</td>
<td></td>
<td></td>
<td></td>
<td><25</td>
<td>20,967</td>
<td>339</td>
<td>318</td>
</tr>
</tbody>
</table>

Mix pre-injection mine pool water with SNDSCR water in the ratio 2:1; Dissolution of gypsum; Precipitation of iron oxide

<table>
<thead>
<tr>
<th>Description</th>
<th>Sample ID</th>
<th>Date</th>
<th>Metals in ug/L</th>
<th>Fe</th>
<th>Zn</th>
<th>Cd</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-injection mine pool water at Sooner Pile</td>
<td>SMB2</td>
<td>07/11/07</td>
<td></td>
<td>11,900</td>
<td>11,800</td>
<td>8.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Water portion of fine chat slurry in sandscrew tank</td>
<td>SNDSCR</td>
<td>07/17/08</td>
<td></td>
<td><25</td>
<td>20,300</td>
<td>411</td>
<td>294</td>
</tr>
<tr>
<td>First post-injection mine pool sample at Sooner Pile</td>
<td>SMB2</td>
<td>10/24/07</td>
<td></td>
<td><25</td>
<td>20,100</td>
<td>246</td>
<td>78.1</td>
</tr>
<tr>
<td>PHREEQC simulation results</td>
<td></td>
<td></td>
<td></td>
<td><25</td>
<td>14,666</td>
<td>143</td>
<td>100</td>
</tr>
</tbody>
</table>
Short-Term Pilot Studies: Lead

[Graph showing concentration in µg/L over time from 10/01/04 to 03/24/10 for RMB3, FCB3, and TMB3]
Short-Term Pilot Studies: Cadmium
Short-Term Pilot Studies: Zinc
PHAST Model

- Groundwater flow and solute transport model combined with PHREEQC
- Transport simulated with parameters from site groundwater flow model (conductivity, gradients) and modified with transport parameters
 - Dispersion
 - Cation exchange
 - Adsorption
 - Mineral precipitation
PHAST Simulations

• Pre-injection mine water introduced as continuous flow into Boone Aquifer (outside of mine influence): 40 years
• Sooner injection well data were diluted based on results from dilution simulation within mine workings: 5-year injection
• Diluted water flows into Boone: 20 years
• One-dimensional flow was simulated for simplicity
PHAST Simulations

- Post-injection water represented by October 2009 sample from well SMB3 – washed fines injection well from Sooner Pile
- General mine pool water represented by pre-injection sample from well SMB2 – also from Sooner Pile
- These two waters were mixed in different proportions using PHREEQC to represent different stages of discharge into Boone
- Boone aquifer represented by well BW13 – outside of mine influence
PHAST Model Layout: Phase 1

Pre-Injection Mine Water (Ca-SO₄, pH 6.3)

Undisturbed Boone Aquifer (Na-HCO₃, pH 8.6)

- Adsorption to Iron Oxide Surfaces
- Exchange Reactions on Carbonate and Clay Mineral Surfaces
- Precipitation of Metal Carbonate Minerals

2,000 Feet
PHAST Model Layout: Phase 2

Diluted Post-Injection Water (Ca-SO₄, pH 6.3-6.6)

Boone Aquifer Affected by Historical Mine Discharge (Ca-HCO₃-SO₄, pH 7)

- Adsorption to Iron Oxide Surfaces
- Exchange Reactions on Carbonate and Clay Mineral Surfaces
- Precipitation of Metal Carbonate Minerals

2,000 Feet
PHAST Model Results
Phase 1: 10 years (~1980)
PHAST Model Results
Phase 1: 20 years (~1990)

Distance from Mine Workings Discharge into Boone Aquifer (ft)

Cadmium, Lead, Arsenic, Zinc Concentration (mg/L)
PHAST Model Results
Phase 1: 40 years (~2010)
PHAST Model Results
Phase 2 Sooner: 5 years

Zinc Concentration (mg/L)
Cadmium, Lead and Arsenic Concentration (mg/L)
Distance from Mine Workings Discharge into Boone Aquifer (ft)
PHAST Model Results
Phase 2 Sooner: 25 years

Distance from Mine Workings Discharge into Boone Aquifer (ft)

Cadmium, Lead, Arsenic, Zinc Concentration (mg/L)
Conclusions: Geochemistry

• Trace metal minerals and salts dissolve during slurry process
• Injected slurry temporarily increases metals concentrations in mine pool
• Concentrations return to original levels after injection stops (trapped in fines)
• Injection expected to have little effect on discharge to Boone Aquifer
 – Higher concentrations temporary
 – High dilution in mine workings
 – Further attenuation after discharge
Questions?
Groundwater Flow Directions
Piper Diagram

Key to Water Sources
- Tailings Pond
- Sandscrew Discharge
- Rubidoux
- Mine Pool
- Chat Pile
- Boone
Boone Groundwater Chemistry
Mine Pool Water Chemistry
Rubidoux Groundwater Chemistry
PHAST Model

- Alternative to use of K_d for adsorption by explicitly modeling adsorption of metals to mineral surfaces
- Database contains expressions for adsorption to hydrous ferric oxides, the most common adsorbent
- Can add published expressions for other minerals (carbonates used in this study)
- Measured or assumed mineral concentrations provide more realistic ceiling for adsorption reactions
 - K_d assumes unlimited adsorption capacity
Dilution from Sooner Location
Dilution from Sooner Location

[Graph showing dilution over time]
Observed Data: Douthat
Observed Data: Douthat