Geospatial Distribution of Soil Trace Metals Concentrations in a Mining Impacted Agricultural Watershed

Amy Sikora
School of Civil Engineering and Environmental Science
University of Oklahoma
June 5, 2018
Introduction
Neosho River Bottoms

- ~25,000 acre floodplain and upland area

- Significant restoration opportunities
 - Bottomland hardwood forest
 - Oxbow lakes
 - Scrub shrub wetland
 - Eastern tall grass prairie

- GRDA acquired 3,600 acres along the Neosho River
Neosho River Bottoms

- ~25,000 acre floodplain and upland area

- Significant restoration opportunities
 - Bottomland hardwood forest
 - Oxbow lakes
 - Scrub shrub wetland
 - Eastern tall grass prairie

- GRDA acquired 3,600 acres along the Neosho River
The area of interest south of Superfund Site
The area of interest south of Superfund Site

Elm Creek Watershed
Tar Creek Superfund Site
Neosho Bottoms
Neosho River
Elm Creek
Kansas
Oklahoma
Soil Trace Metals Detection

- Inductively coupled plasma optical emission spectrometry (ICP-OES)
- Inductively coupled plasma mass spectrometry (ICP-MS)
- X-ray fluorescence (XRF)
 - On-site fast screening method for soil metals
 - Cost effective when compared to ICP-OES
 - Viewed by the environmental community as an acceptable analytical approach for field applications
Objectives
Objectives

1. Evaluate soil lead, zinc, and cadmium concentrations in stream terraces and upland environments in this mining impacted agricultural watershed.

2. Generate a spatial perspective of the distribution of lead, zinc, and cadmium concentrations.
Objectives

1. Evaluate soil lead, zinc, and cadmium concentrations in stream terraces and upland environments in this mining impacted agricultural watershed.

2. Generate a spatial perspective of the distribution of lead, zinc, and cadmium concentrations.
Methods & Locations
The soil metal concentration in the floodplain were determined three different ways

Method 1: *In Situ*
Field Portable XRF Analyses (EPA 6200)
Bulk Sample
The soil metal concentration in the floodplain were determined three different ways

Method 1: In Situ
Field Portable XRF Analyses (EPA 6200)
Bulk Sample

• Soil samples were collected using stainless steel shovel
 • 13 cm X 13 cm X 10 cm cuttings
 • Sealed tightly in 3 mil or thicker plastic bag

• Sample locations were recorded with GPS

• Transported back to laboratory
The soil metal concentration in the floodplain were determined three different ways

Method 1:
In Situ
Field Portable XRF Analyses (EPA 6200)
Bulk Sample

Method 2:
Laboratory
Field Portable XRF Analyses (EPA 6200)
Dried and < # 60 Sieve Fraction
The soil metal concentration in the floodplain were determined three different ways

Method 3:

Laboratory
Microwave HNO₃ digestion (EPA 3051)
Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) Analyses (EPA 6010)
Dried and < # 60 Sieve Fraction
The soil metal concentration in the floodplain were determined three different ways

Method 1:
In Situ
Field Portable XRF Analyses (EPA 6200)
Bulk Sample

Method 2:
Laboratory
Field Portable XRF Analyses (EPA 6200)
Dried and < # 60 Sieve Fraction

Method 3:
Laboratory
Microwave HNO₃ digestion (EPA 3051)
Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) Analyses (EPA 6010)
Dried and < # 60 Sieve Fraction
Sampling Locations

- Elm Creek road crossings (intersecting the stream)
- Properties owned by GRDA
 - Elm Creek riparian zone
 - Neosho Bottoms uplands
Elm Creek Riparian Zone

- Samples taken from 15 locations
 - 7 sites at road crossings
 - 8 sites in GRDA properties

- Left and right side of creek
 - Top of Bank
 - Primary Terrace
 - Lower Terrace

- 106 soil samples
Elm Creek Riparian Zone

• Samples taken from 15 locations
 • 7 sites at road crossings
 • 8 sites in GRDA properties

• Left and right side of creek
 • Top of Bank
 • Primary Terrace
 • Lower Terrace

• 106 soil samples
Neosho Bottoms Upland Sites

• Series of transects
 • Total length of 13.2 miles
• Samples taken every 360 feet
• Locations entered on GPS before sampling
• Exact GPS locations taken in field
• 278 soil samples
Neosho Bottoms Upland Sites

- Series of transects
 - Total length of 13.2 miles
- Samples taken every 360 feet
- Locations entered on GPS before sampling
- Exact GPS locations taken in field
- 278 soil samples
Results & Conclusions
Elm Creek Riparian Zone Lead Concentrations

Laboratory [Pb] in <#60 Sieve Fraction (mg/Kg)

Stream Distance from Head Waters (km)

Left Bank

Right Bank

Top of Bank
Primary Terrace
Lower Terrace

Sediment Quality Guideline
Pb = 150 mg/kg
Elm Creek Riparian Zone Zinc Concentrations

Laboratory [Zn] in <#60 Sieve Fraction (mg/Kg)

Stream Distance from Head Waters (km)

Left Bank

Right Bank

Sediment Quality Guideline

Zn = 2100 mg/kg
Elm Creek Riparian Zone Estimated Cadmium Concentrations

Estimated [Cd] (mg/Kg)

Stream Distance from Head Waters (km)

Left Bank
Right Bank

Top of Bank
Primary Terrace
Lower Terrace

Sediment Quality Guideline
Cd = 11.1 mg/kg

Cd = 11.1 mg/kg
Elm Creek East and West Branches

Laboratory XRF in <#60 Sieve Fraction (mg/kg)

- **Pb**
 - SQG Pb = 150 mg/kg
 - E30: 300 mg/kg
 - E40: 200 mg/kg
 - E50: 100 mg/kg

- **Zn**
 - SQG Zn = 2100 mg/kg
 - E30: 2100 mg/kg
 - E40: 2000 mg/kg
 - E50: 1900 mg/kg

- **Cd**
 - SQG Cd = 11.1 mg/kg
 - E30: 10 mg/kg
 - E40: 9 mg/kg
 - E50: 8 mg/kg

Estimated [Cd] (mg/Kg)

West Branch
- E30
- E40
- E50

East Branch
- E30
- E40
- E50
Upland Frequency Distribution

- **Pb = 500 mg/kg**
 - Remedial Goal
 - Frequency Distribution:
 - 0-49: 214
 - 50-99: 49
 - 100-149: 10
 - 149-200: 5

- **Zn = 1100 mg/kg**
 - Remedial Goal
 - Frequency Distribution:
 - 0-199: 188
 - 200-399: 51
 - 400-599: 21
 - 600-799: 7
 - 800-999: 4
 - 1000-1099: 1
 - >1100: 7

- **Cd = 10 mg/kg**
 - Estimated
 - Frequency Distribution:
 - 0.49: 254
 - 5.99: 15
 - >10: 7
Legend
- GRDA Properties
- Soil Sampling Location
- Exceeding RG
- Elm Creek
<table>
<thead>
<tr>
<th>Location</th>
<th>Zn (mg/kg)</th>
<th>Cd (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>XRFS</td>
<td>ICP Estimated</td>
</tr>
<tr>
<td>1</td>
<td>1260 1070</td>
<td>10.9 9.80</td>
</tr>
<tr>
<td>2</td>
<td>1766 1440</td>
<td>15.2 16.5</td>
</tr>
<tr>
<td>3</td>
<td>1474 1380</td>
<td>12.7 12.8</td>
</tr>
<tr>
<td>4</td>
<td>2068 1630</td>
<td>17.7 17.2</td>
</tr>
<tr>
<td>5</td>
<td>1277 1200</td>
<td>11.1 10.0</td>
</tr>
<tr>
<td>6</td>
<td>1232 995</td>
<td>10.7 8.31</td>
</tr>
<tr>
<td>7</td>
<td>1285 1230</td>
<td>11.1 9.50</td>
</tr>
</tbody>
</table>

Legend
- GRDA Properties
- Soil Sampling Location
- Exceeding RG
- Elm Creek
Concentration Distribution Interpolation

Lead

Zinc

Lab XRF Readings

Lead
Zinc

RG

RG

0 0.38 0.76 1.5 2.25 3
Kilometers

mg/kg
Concentration Distribution Interpolation

Cadmium

Zinc

Lab XRF Readings

Cadmium
Zinc

RG
10
1100
RG

0
5
10
14
18

0
500
1000
1500
2000

0
0.38
0.76
1.5
2.25
3
Kilometers

mg/kg
Cluster and Outlier Analysis

Lead

Nearest Neighbor Radius (300 m)

Zinc

- High-High Cluster
- Low-Low Cluster
- Low-High Outlier
- High-Low Outlier
- Not Significant
Cluster and Outlier Analysis

Cadmium

Zinc

Nearest Neighbor Radius (300 m)
Hot Spot Analysis

Lead

Zinc

- Cold spot – 99% confidence
- Cold spot – 95% confidence
- Cold spot – 90% confidence
- Not Significant
- Hot spot – 90% confidence
- Hot spot – 95% confidence
- Hot spot – 99% confidence
Hot Spot Analysis

Cadmium

Zinc

- Cold spot – 99% confidence
- Cold spot – 95% confidence
- Cold spot – 90% confidence
- Not Significant
- Hot spot – 90% confidence
- Hot spot – 95% confidence
- Hot spot – 99% confidence
Hot Spot Analysis

Cadmium

Zinc

- Cold spot – 99% confidence
- Cold spot – 95% confidence
- Cold spot – 90% confidence
- Not Significant
- Hot spot – 90% confidence
- Hot spot – 95% confidence
- Hot spot – 99% confidence
Conclusions

• Elm Creek riparian area
 • Decreasing trend in trace metals concentrations as distance downstream increases
 • Trace metals influence from Tar Creek Superfund Site

• Upland concentration distribution
 • Elevated trace metals influence from gravel roads
 • Elevated concentrations are likely due to upstream source materials being transported downstream

• Cleanup of source material!
Acknowledgements

- GRDA grant #1053733
- Aaron Roper, GRDA
- OU CREW
 - Thank you to everyone who helped with field sampling, laboratory analysis, and data reduction!
- Darren Shepherd
Questions?